22,820 research outputs found

    Exact Computation of Influence Spread by Binary Decision Diagrams

    Full text link
    Evaluating influence spread in social networks is a fundamental procedure to estimate the word-of-mouth effect in viral marketing. There are enormous studies about this topic; however, under the standard stochastic cascade models, the exact computation of influence spread is known to be #P-hard. Thus, the existing studies have used Monte-Carlo simulation-based approximations to avoid exact computation. We propose the first algorithm to compute influence spread exactly under the independent cascade model. The algorithm first constructs binary decision diagrams (BDDs) for all possible realizations of influence spread, then computes influence spread by dynamic programming on the constructed BDDs. To construct the BDDs efficiently, we designed a new frontier-based search-type procedure. The constructed BDDs can also be used to solve other influence-spread related problems, such as random sampling without rejection, conditional influence spread evaluation, dynamic probability update, and gradient computation for probability optimization problems. We conducted computational experiments to evaluate the proposed algorithm. The algorithm successfully computed influence spread on real-world networks with a hundred edges in a reasonable time, which is quite impossible by the naive algorithm. We also conducted an experiment to evaluate the accuracy of the Monte-Carlo simulation-based approximation by comparing exact influence spread obtained by the proposed algorithm.Comment: WWW'1

    Influence Maximization: Near-Optimal Time Complexity Meets Practical Efficiency

    Full text link
    Given a social network G and a constant k, the influence maximization problem asks for k nodes in G that (directly and indirectly) influence the largest number of nodes under a pre-defined diffusion model. This problem finds important applications in viral marketing, and has been extensively studied in the literature. Existing algorithms for influence maximization, however, either trade approximation guarantees for practical efficiency, or vice versa. In particular, among the algorithms that achieve constant factor approximations under the prominent independent cascade (IC) model or linear threshold (LT) model, none can handle a million-node graph without incurring prohibitive overheads. This paper presents TIM, an algorithm that aims to bridge the theory and practice in influence maximization. On the theory side, we show that TIM runs in O((k+\ell) (n+m) \log n / \epsilon^2) expected time and returns a (1-1/e-\epsilon)-approximate solution with at least 1 - n^{-\ell} probability. The time complexity of TIM is near-optimal under the IC model, as it is only a \log n factor larger than the \Omega(m + n) lower-bound established in previous work (for fixed k, \ell, and \epsilon). Moreover, TIM supports the triggering model, which is a general diffusion model that includes both IC and LT as special cases. On the practice side, TIM incorporates novel heuristics that significantly improve its empirical efficiency without compromising its asymptotic performance. We experimentally evaluate TIM with the largest datasets ever tested in the literature, and show that it outperforms the state-of-the-art solutions (with approximation guarantees) by up to four orders of magnitude in terms of running time. In particular, when k = 50, \epsilon = 0.2, and \ell = 1, TIM requires less than one hour on a commodity machine to process a network with 41.6 million nodes and 1.4 billion edges.Comment: Revised Sections 1, 2.3, and 5 to remove incorrect claims about reference [3]. Updated experiments accordingly. A shorter version of the paper will appear in SIGMOD 201

    Influence Maximization Meets Efficiency and Effectiveness: A Hop-Based Approach

    Full text link
    Influence Maximization is an extensively-studied problem that targets at selecting a set of initial seed nodes in the Online Social Networks (OSNs) to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale OSNs. Prior Monte-Carlo-simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can easily scale to millions of nodes and billions of edges. Unlike previous heuristics, our proposed hop-based approaches can provide certain theoretical guarantees. Experimental evaluations with real OSN datasets demonstrate the efficiency and effectiveness of our algorithms.Comment: Extended version of the conference paper at ASONAM 2017, 11 page
    • …
    corecore