25,652 research outputs found

    DroTrack: High-speed Drone-based Object Tracking Under Uncertainty

    Full text link
    We present DroTrack, a high-speed visual single-object tracking framework for drone-captured video sequences. Most of the existing object tracking methods are designed to tackle well-known challenges, such as occlusion and cluttered backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in three-dimensional space, causes high uncertainty. The uncertainty problem leads to inaccurate location predictions and fuzziness in scale estimations. DroTrack solves such issues by discovering the dependency between object representation and motion geometry. We implement an effective object segmentation based on Fuzzy C Means (FCM). We incorporate the spatial information into the membership function to cluster the most discriminative segments. We then enhance the object segmentation by using a pre-trained Convolution Neural Network (CNN) model. DroTrack also leverages the geometrical angular motion to estimate a reliable object scale. We discuss the experimental results and performance evaluation using two datasets of 51,462 drone-captured frames. The combination of the FCM segmentation and the angular scaling increased DroTrack precision by up to 9%9\% and decreased the centre location error by 162162 pixels on average. DroTrack outperforms all the high-speed trackers and achieves comparable results in comparison to deep learning trackers. DroTrack offers high frame rates up to 1000 frame per second (fps) with the best location precision, more than a set of state-of-the-art real-time trackers.Comment: 10 pages, 12 figures, FUZZ-IEEE 202

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Benchmarking and Error Diagnosis in Multi-Instance Pose Estimation

    Get PDF
    We propose a new method to analyze the impact of errors in algorithms for multi-instance pose estimation and a principled benchmark that can be used to compare them. We define and characterize three classes of errors - localization, scoring, and background - study how they are influenced by instance attributes and their impact on an algorithm's performance. Our technique is applied to compare the two leading methods for human pose estimation on the COCO Dataset, measure the sensitivity of pose estimation with respect to instance size, type and number of visible keypoints, clutter due to multiple instances, and the relative score of instances. The performance of algorithms, and the types of error they make, are highly dependent on all these variables, but mostly on the number of keypoints and the clutter. The analysis and software tools we propose offer a novel and insightful approach for understanding the behavior of pose estimation algorithms and an effective method for measuring their strengths and weaknesses.Comment: Project page available at http://www.vision.caltech.edu/~mronchi/projects/PoseErrorDiagnosis/; Code available at https://github.com/matteorr/coco-analyze; published at ICCV 1

    Semantic Visual Localization

    Full text link
    Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4
    • 

    corecore