7 research outputs found

    SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

    Full text link
    Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS

    Accurate Object Detection with Location Relaxation and Regionlets Re-localization

    No full text
    Abstract. Standard sliding window based object detection requires dense clas-sifier evaluation on densely sampled locations in scale space in order to achieve an accurate localization. To avoid such dense evaluation, selective search based algorithms only evaluate the classifier on a small subset of object proposals. Notwithstanding the demonstrated success, object proposals do not guarantee perfect overlap with the object, leading to a suboptimal detection accuracy. To address this issue, we propose to first relax the dense sampling of the scale space with coarse object proposals generated from bottom-up segmentations. Based on detection results on these proposals, we then conduct a top-down search to more precisely localize the object using supervised descent. This two-stage detection strategy, dubbed location relaxation, is able to localize the object in the contin-uous parameter space. Furthermore, there is a conflict between accurate object detection and robust object detection. That is because the achievement of the later requires the accommodation of inaccurate and perturbed object locations in the training phase. To address this conflict, we leverage the rich spatial informa-tion learned from the Regionlets detection framework to determine where the ob-ject is precisely localized. Our proposed approaches are extensively validated on the PASCAL VOC 2007 dataset and a self-collected large scale car dataset. Our method boosts the mean average precision of the current state-of-the-art (41.7%) to 44.1 % on PASCAL VOC 2007 dataset. To our best knowledge, it is the best performance reported without using outside data 4.
    corecore