1,128 research outputs found

    On the Exponentiation of Interval Matrices

    Get PDF
    The numerical computation of the exponentiation of a real matrix has been intensively studied. The main objective of a good numerical method is to deal with round-off errors and computational cost. The situation is more complicated when dealing with interval matrices exponentiation: Indeed, the main problem will now be the dependency loss of the different occurrences of the variables due to interval evaluation, which may lead to so wide enclosures that they are useless. In this paper, the problem of computing a sharp enclosure of the interval matrix exponential is proved to be NP-hard. Then the scaling and squaring method is adapted to interval matrices and shown to drastically reduce the dependency loss w.r.t. the interval evaluation of the Taylor series

    Moment Methods for Exotic Volatility Derivatives

    Get PDF
    The latest generation of volatility derivatives goes beyond variance and volatility swaps and probes our ability to price realized variance and sojourn times along bridges for the underlying stock price process. In this paper, we give an operator algebraic treatment of this problem based on Dyson expansions and moment methods and discuss applications to exotic volatility derivatives. The methods are quite flexible and allow for a specification of the underlying process which is semi-parametric or even non-parametric, including state-dependent local volatility, jumps, stochastic volatility and regime switching. We find that volatility derivatives are particularly well suited to be treated with moment methods, whereby one extrapolates the distribution of the relevant path functionals on the basis of a few moments. We consider a number of exotics such as variance knockouts, conditional corridor variance swaps, gamma swaps and variance swaptions and give valuation formulas in detail

    A Matrix Approach to Numerical Solution of the DGLAP Evolution Equations

    Full text link
    A matrix-based approach to numerical integration of the DGLAP evolution equations is presented. The method arises naturally on discretisation of the Bjorken x variable, a necessary procedure for numerical integration. Owing to peculiar properties of the matrices involved, the resulting equations take on a particularly simple form and may be solved in closed analytical form in the variable t=ln(alpha_0/alpha). Such an approach affords parametrisation via data x bins, rather than fixed functional forms. Thus, with the aid of the full correlation matrix, appraisal of the behaviour in different x regions is rendered more transparent and free of pollution from unphysical cross-correlations inherent to functional parametrisations. Computationally, the entire programme results in greater speed and stability; the matrix representation developed is extremely compact. Moreover, since the parameter dependence is linear, fitting is very stable and may be performed analytically in a single pass over the data values.Comment: 13 pages, no figures, typeset with revtex4 and uses packages: acromake, amssym
    • …
    corecore