2,398 research outputs found

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index

    Full text link
    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function and by a refractive-index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high-end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive-index mismatch for high-aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high-angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the point-spread-function of a point-scanning confocal microscope and showed that an index-matched, micron-sized spherical object is still significantly elongated due to this PSF, which confirms that single micron-sized spheres are not well suited to determine accurate axial calibration nor axial scaling.Comment: 8 pages, 5 figure

    Extended depth-of-field imaging and ranging in a snapshot

    Get PDF
    Traditional approaches to imaging require that an increase in depth of field is associated with a reduction in numerical aperture, and hence with a reduction in resolution and optical throughput. In their seminal work, Dowski and Cathey reported how the asymmetric point-spread function generated by a cubic-phase aberration encodes the detected image such that digital recovery can yield images with an extended depth of field without sacrificing resolution [Appl. Opt. 34, 1859 (1995)]. Unfortunately recovered images are generally visibly degraded by artifacts arising from subtle variations in point-spread functions with defocus. We report a technique that involves determination of the spatially variant translation of image components that accompanies defocus to enable determination of spatially variant defocus. This in turn enables recovery of artifact-free, extended depth-of-field images together with a two-dimensional defocus and range map of the imaged scene. We demonstrate the technique for high-quality macroscopic and microscopic imaging of scenes presenting an extended defocus of up to two waves, and for generation of defocus maps with an uncertainty of 0.036 waves
    • …
    corecore