2,147 research outputs found

    Brittle-viscous deformation cycles at the base of the seismogenic zone in the continental crust

    Get PDF
    The main goal of the study was to determine the dynamical cycle of ductile-brittle deformation and to characterise the fluid pathways at different scales of a brittle-viscous fault zone active at the base of the seismogenic crust. Object of analysis are samples from the sinistral strike-slip fault zone BFZ045 from Olkiluoto (SW Finland), located at the site of a deep geological repository for nuclear waste. Combined microstructural analysis, electron backscatter diffraction (EBSD), and mineral chemistry were applied to reconstruct the variations in pressure, temperature, fluid pressure, and differential stress that mediated deformation and strain localization along BFZ045 across the BDTZ. Ductile deformation took place at 400-500° C and 3-4 kbar, and recrystallized grain size piezometry for quartz document a progressive increase in differential stress during mylonitization, from ca. 50 MPa to ca. 120 MPa. The increase in differential stress was localised towards the shear zone center, which was eventually overprinted by brittle deformation in a narrowing shear zone. Cataclastic deformation occurred under lower T conditions down to T ≥ 320° C and was not further overprinted by mylonitic creep. Porosity estimates were obtained through the combination of x-ray micro-computed tomography (µCT), mercury intrusion porosimetry, He pycnometry, and microstructural analysis. Low porosity values (0.8-4.4%) for different rock type, 2-20 µm pore size, representative of pore connectivity, and microstructural observation suggest a relationship to a dynamical cycle of fracturing and sealing mechanism, mostly controlled by ductile deformation. Similarly, the observation from fracture orientation analysis indicates that the mylonitic precursor of BFZ045 played an important role in the localization of the brittle deformation. This thesis highlights that the ductile-brittle deformation cycle in BFZ045 was controlled by transient oscillations in fluid pressure in a narrowing shear zone deforming at progressively higher differential stress during cooling

    The effect of autologous macrophage therapy in cirrhosis in response to individual immune reparative pathways: developing a novel therapy

    Get PDF
    BACKGROUND: Liver cirrhosis is the end stage of any injury process to the liver. Once established it inevitably progresses to complications such as portal hypertension, cancer and death. There is not cure for liver cirrhosis besides liver transplant. We face an unmet demand for treatment of this condition. The role of macrophages in fibrosis development and resolution in the liver has been extensively investigated. Prof Forbes group invested in the development of autologous macrophage product to promote fibrosis resolution hence cirrhosis regression. This has demonstrated its efficacy and safety in animal models. From these encouraging pre-clinic data a phase 1 first in human clinical trial of autologous activated macrophage product for cirrhotic patients was developed. METHODS: Using an established 3+3 dose escalation model we enrolled a total of 9 subject in the phase 1 trial reaching a maximum achieved and safe dose of 1x10^9 macrophages. In addition to adverse events, dose toxicity and macrophage activation syndrome (MAS) parameter, we evaluated a varied range of circulating cytokines and chemokine pre and post treatment using a commercial kit. Moreover we developed a protocol for P13- magnetic resonance spectrometry (MRS) for the analysis of the metabolically active liver parenchyma. Data from the phase 1 trial were used to improve the autologous cellular produce and phase 2 randomised controlled trial. RESULTS: The autologous activated macrophage produce is demonstrated not to cause any toxicity in this first in human study of cirrhotic population of different aetiology. Cytokine and chemokine analysis supports these findings and specifically demonstrates low levels of IL-8, which represent cardinal feature of MAS. Other interesting cytokine signals may support extra cellular matrix remodelling effect of the autologous macrophage product infusion. In addition we demonstrated a reproducible protocol for MRS in liver disease. DISCUSSION: Autologous activated macrophage infusion did not result in any toxicity in cirrhotic subjects taking part in this study and shows preliminary signs of efficacy in fibrosis resolution both clinically and biochemically. This work places the basis of development of cellular products for treatment of cirrhosis and fibrosis and provides invaluable insight in immune response to cellular treatment

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial

    Full text link
    On top of machine learning models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage and the remaining useful life prediction of turbofan engines

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings
    corecore