250,117 research outputs found

    Hoyle-Lyttleton Accretion onto Accretion Disks

    Get PDF
    We investigate Hoyle-Lyttleton accretion for the case where the central source is a luminous accretion disk. %In classical Hoyle-Lyttleton accretion onto a ``spherical'' source, accretion takes place in an axially symmetric manner around a so-called accretion axis. The accretion rate of the classical Hoyle-Lyttleton accretion onto a non-luminous object and Γ\Gamma the luminosity of the central object normalized by the Eddington luminosity. %If the central object is a compact star with a luminous accretion disk, the radiation field becomes ``non-spherical''. %Although the gravitional field remains spherical. In such a case the axial symmetry around the accretion axis breaks down; the accretion radius RaccR_{acc} generally depends on an inclination angle ii between the accretion axis and the symmetry axis of the disk and the azimuthal angle ϕ\phi around the accretion axis. %That is, the cross section of accretion changes its shape. Hence, the accretion rate M˙\dot{M}, which is obtained by integrating RaccR_{acc} around ϕ\phi, depends on ii. % as well as MM, Γ\Gamma, and vv_\infty. %In the case of an edge-on accretion (i=90i=90^{\circ}), The accretion rate is larger than that of the spherical case and approximately expressed as M˙M˙HL(1Γ)\dot{M} \sim \dot{M}_{HL} (1-\Gamma) for Γ0.65\Gamma \leq 0.65 and M˙M˙HL(2Γ)2/5\dot{M} \sim \dot{M}_{HL} (2-\Gamma)^2/5 for Γ0.65\Gamma \geq 0.65. %Once the accretion disk forms and the anisotropic radiation fields are produced around the central object,the accretion plane will be maintained automatically (the direction of jets associated with the disk is also maintained). %Thus, the anisotropic radiation field of accretion disks drastically changes the accretion nature, that gives a clue to the formation of accretion disks around an isolated black hole.Comment: 5 figure

    A New Parameter In Accretion Disk Model

    Full text link
    Taking optically thin accretion flows as an example, we investigate the dynamics and the emergent spectra of accretion flows with different outer boundary conditions (OBCs) and find that OBC plays an important role in accretion disk model. This is because the accretion equations describing the behavior of accretion flows are a set of {\em differential} equations, therefore, accretion is intrinsically an initial-value problem. We argue that optically thick accretion flow should also show OBC-dependent behavior. The result means that we should seriously consider the initial physical state of the accretion flow such as its angular momentum and its temperature. An application example to Sgr A^* is presented.Comment: 6 pages, 4 figures, to appear in the Proceeding of "Pacific Rim Conference on Stellar Astrophysics", Aug. 1999, HongKong, Chin

    General relativistic radiative transfer: formulation and emission from structured tori around black holes

    Full text link
    We construct a general relativistic radiative transfer (RT) formulation, applicable to particles with or without mass in astrophysical settings. Derived from first principles, the formulation is manifestly covariant. Absorption and emission, as well as relativistic, geometrical and optical depth effects are treated self-consistently. The RT formulation can handle 3D geometrical settings and structured objects with variations and gradients in the optical depths across the objects and along the line-of-sight. The presence of mass causes the intensity variation along the particle bundle ray to be reduced by an aberration factor. We apply the formulation and demonstrate RT calculations for emission from accretion tori around rotating black holes, considering two cases: idealised optically thick tori that have a sharply defined emission boundary surface, and structured tori that allow variations in the absorption coefficient and emissivity within the tori. Intensity images and emission spectra of these tori are calculated. Geometrical effects, such as lensing-induced self-occulation and multiple-image contribution are far more significant in accretion tori than geometrically thin accretion disks. Optically thin accretion tori emission line profiles are distinguishable from the profiles of lines from optically thick accretion tori and optically thick geometrically thin accretion disks. Line profiles of optically thin accretion tori have a weaker dependence on viewing inclination angle than those of the optically thick accretion tori or accretion disks, especially at high viewing inclination angles. Limb effects are present in accretion tori with finite optical depths. Finally, in accretion flows onto relativistic compact objects, gravitationally induced line resonance can occur. This resonance occurs easily in 3D flows, but not in 2D flows, such as a thin accretion disk around a black hole.Comment: 13 pages, 10 figures, Accepted for publication in Astronomy and Astrophysic

    Spherical Accretion

    Get PDF
    We compare different examples of spherical accretion onto a gravitating mass. Limiting cases include the accretion of a collisionally dominated fluid and the accretion of collisionless particles. We derive expressions for the accretion rate and density profile for semi-collisional accretion which bridges the gap between these limiting cases. Particle crossing of the Hill sphere during the formation of the outer planets is likely to have taken place in the semi-collisional regime.Comment: ApJ Letters, 3 page

    Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Full text link
    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ0\Lambda\rightarrow0.Comment: 9 pages, no figur

    Long-term evolution of accretion discs in Be/X-ray binaries

    Get PDF
    We numerically study the long-term evolution of the accretion disc around the neutron star in a coplanar Be/X-ray binary with a short period and a moderate eccentricity. From three dimensional Smoothed Particle Hydrodynamics simulations, we find that the disc evolves through three distinct phases, each characterized by different mass accretion patterns. In the first "developing phase", the disc is formed and develops towards a nearly Keplerian disc. It has a relatively large, double-peaked mass-accretion rate with the higher peak by the direct accretion at periastron, which is followed by the lower peak by the accretion induced by a one-armed spiral wave. In the second "transition phase", the disc is approximately Keplerian and grows with time. The mass-accretion rate increases as the disc grows. In the second phase, there is a transition in the mass accretion rate from a double peaked to a single peaked pattern. In the final quasi-steady state, the mass-accretion rate is on average balanced with the mass-transfer rate from the Be disc and exhibits a regular orbital modulation. In the quasi-steady state, the mass-accretion rate has a single peak by the wave-induced accretion as in a later stage of the transition phase. The orbital modulation of X-ray maxima could provide not only a circumstantial evidence for the persistent disc but also an observational diagnosis of the disc evolutionary state.Comment: 10 pages, 7 figures, Accepted for publication in MNRA

    Relativistic Accretion

    Get PDF
    A brief summary of the properties of astrophysical black holes is presented. Various modes of accretion are distinguished, corresponding to accretion at rates from well below to well above the Eddington rate. The importance of mass loss is emphasized when the accreting gas cannot radiate and it is asserted that a strong wind is likely to be necessary to carry off mass, angular momentum and energy from the accreting gas. The possible importance of the black hole spin in the formation of jets and in dictating the relative importance of non-thermal emission over thermal radiation is discussed.Comment: To appear in "Astrophysical Discs", ASP Conference Series, 13 pages, latex, 0 figure

    Gas Accretion in Star-Forming Galaxies

    Full text link
    Cold-mode gas accretion onto galaxies is a direct prediction of LCDM simulations and provides galaxies with fuel that allows them to continue to form stars over the lifetime of the Universe. Given its dramatic influence on a galaxy's gas reservoir, gas accretion has to be largely responsible for how galaxies form and evolve. Therefore, given the importance of gas accretion, it is necessary to observe and quantify how these gas flows affect galaxy evolution. However, observational data have yet to conclusively show that gas accretion ubiquitously occurs at any epoch. Directly detecting gas accretion is a challenging endeavor and we now have obtained a significant amount of observational evidence to support it. This chapter reviews the current observational evidence of gas accretion onto star-forming galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. This chapter includes 22 pages with 7 Figure
    corecore