36,888 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    IntRepair: Informed Repairing of Integer Overflows

    Full text link
    Integer overflows have threatened software applications for decades. Thus, in this paper, we propose a novel technique to provide automatic repairs of integer overflows in C source code. Our technique, based on static symbolic execution, fuses detection, repair generation and validation. This technique is implemented in a prototype named IntRepair. We applied IntRepair to 2,052C programs (approx. 1 million lines of code) contained in SAMATE's Juliet test suite and 50 synthesized programs that range up to 20KLOC. Our experimental results show that IntRepair is able to effectively detect integer overflows and successfully repair them, while only increasing the source code (LOC) and binary (Kb) size by around 1%, respectively. Further, we present the results of a user study with 30 participants which shows that IntRepair repairs are more than 10x efficient as compared to manually generated code repairsComment: Accepted for publication at the IEEE TSE journal. arXiv admin note: text overlap with arXiv:1710.0372

    Dissociation of Action and Object Naming: Evidence From Cortical Stimulation Mapping

    Get PDF
    This cortical stimulation mapping study investigates the neural representation of action and object naming. Data from 13 neurosurgical subjects undergoing awake cortical mapping is presented. Our findings indicate clear evidence of differential disruption of noun and verb naming in the context of this naming task. At the individual level, evidence was found for punctuate regions of perisylvian cortex subserving noun and verb function. Across subjects, however, the location of these sites varied. This finding may help explain discrepancies between lesion and functional imaging studies of noun and verb naming. In addition, an alternative coding of these data served to highlight the grammatical class vulnerability of the target response. The use of this coding scheme implicates a role for the supramarginal gyrus in verb-naming behavior. These data are discussed with respect to a functional-anatomical pathway underlying verb naming

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    The Dynamics of Silica Melts under High Pressure: Mode-Coupling Theory Results

    Full text link
    The high-pressure dynamics of a computer-modeled silica melt is studied in the framework of the mode-coupling theory of the glass transition (MCT) using static-structure input from molecular-dynamics (MD) computer simulation. The theory reproduces the experimentally known viscosity minimum (diffusivity maximum) as a function of density or pressure and explains it in terms of a corresponding minimum in its critical temperature. This minimum arises from a gradual change in the equilibrium static structure which shifts from being dominated by tetrahedral ordering to showing the cageing known from high-density liquids. The theory is in qualitative agreement with computer simulation results.Comment: Presented at ESF EW Glassy Liquids under Pressure, to be published in Journal of Physic
    • …
    corecore