505,278 research outputs found
Low energy indoor network : deployment optimisation
This article considers what the minimum energy indoor access point deployment is in order to achieve a certain downlink quality-of-service. The article investigates two conventional multiple-access technologies, namely: LTE-femtocells and 802.11n Wi-Fi. This is done in a dynamic multi-user and multi-cell interference network. Our baseline results are reinforced by novel theoretical expressions. Furthermore, the work underlines the importance of considering optimisation when accounting for the capacity saturation of realistic modulation and coding schemes. The results in this article show that optimising the location of access points both within a building and within the individual rooms is critical to minimise the energy consumption
Control-data separation architecture for cellular radio access networks: a survey and outlook
Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided
AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing
The enormous success of advanced wireless devices is pushing the demand for
higher wireless data rates. Denser spectrum reuse through the deployment of
more access points per square mile has the potential to successfully meet the
increasing demand for more bandwidth. In theory, the best approach to density
increase is via distributed multiuser MIMO, where several access points are
connected to a central server and operate as a large distributed multi-antenna
access point, ensuring that all transmitted signal power serves the purpose of
data transmission, rather than creating "interference." In practice, while
enterprise networks offer a natural setup in which distributed MIMO might be
possible, there are serious implementation difficulties, the primary one being
the need to eliminate phase and timing offsets between the jointly coordinated
access points.
In this paper we propose AirSync, a novel scheme which provides not only time
but also phase synchronization, thus enabling distributed MIMO with full
spatial multiplexing gains. AirSync locks the phase of all access points using
a common reference broadcasted over the air in conjunction with a Kalman filter
which closely tracks the phase drift. We have implemented AirSync as a digital
circuit in the FPGA of the WARP radio platform. Our experimental testbed,
comprised of two access points and two clients, shows that AirSync is able to
achieve phase synchronization within a few degrees, and allows the system to
nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC
and higher layer aspects of a practical deployment. To the best of our
knowledge, AirSync offers the first ever realization of the full multiuser MIMO
gain, namely the ability to increase the number of wireless clients linearly
with the number of jointly coordinated access points, without reducing the per
client rate.Comment: Submitted to Transactions on Networkin
Automatic map-based FTTx access network design
Several mature and standardized optical access network technologies are available for network operators providing broadband services, being now in deployment phase; therefore cost estimation, business analysis, efficient deployment strategies, network and topology design issues for FTTx access networks play an increasingly important role regarding profitability and market success. In a competitive environment, techno-economic evaluation supports the optimal choice among available technologies. Even the tradeoff between future proof technical superiority and short term investment minimization requires a farseeing decision. In our point of view, cost estimation and techno-economic evaluation is strongly related to strategic network design: among others the uneven population density, irregular street system or infrastructure have significant impact on the network topology, thus the deployment costs as well. In order to deal with these aspects, a high-level, strategic network design is necessary that adapts to geospatial characteristics of the services area, providing accurate and detailed network information for the techno-economic evaluation [1]. We have developed a topology designer methodology that supprts the above requirements, providing (near) optimal topology of the fully or partially optical access network, based on the geospatial information about the service area: digital maps, existing infrastructure and subscriber database. Automatic topology design for large-scale service areas, with 10.000s of subsribers is a highly complex mathematical problem. The tough algorithms for a near optimal, yet efficient solution. The developed algorithms were evaluated regarding their speed and accuracy. Based on topology design results, a detailed and flexible techno-economic comparison is carried out, since the framework handles various broadband access network technologies, as presented in a case study. --Topology design,Strategic Design,Network planning,GIS,Map,Techno-economic,Cost estimation
Ordinance on technical requirements and conditions of use of optical distribution networks of the Croatian regulatory agency - Analysis and outlook
In September 2010 the Croatian regulatory agency (HAKOM) put in force the ordinance on technical requirements and conditions of use of optical distribution networks. With this ordinance the Croatian regulatory agency is looking over the rim by proposing a rather technical approach for the rollout of optical access networks which will have significant influence on the deployment of next generation access networks (NGAN) in Croatia. The ordinance stipulates the requirements that have to be fulfilled in developing, planning, designing, building, using and maintaining optical access networks. Some of the main issues are the obligation of a point-to-point architecture, the focus on open access and the incorporation of municipalities in planning fibre distribution networks. In this way the agency is following a path which is unique in Europe and which is incorporating new players for building the optical network infrastructure. For Croatia an additional aspect is related to the expected accession to the European Union by mid 2013, putting the Government into the position of receiving financial support provided by the structural and cohesion fund of the EU in the amount of 7.6 billion Euros. --optical access networks,next generation access (NGA),regulatory framework,passive infrastructure,fibre to the home (FTTH)
Are Heterogeneous Cloud-Based Radio Access Networks Cost Effective?
Mobile networks of the future are predicted to be much denser than today's
networks in order to cater to increasing user demands. In this context, cloud
based radio access networks have garnered significant interest as a cost
effective solution to the problem of coping with denser networks and providing
higher data rates. However, to the best knowledge of the authors, a
quantitative analysis of the cost of such networks is yet to be undertaken.
This paper develops a theoretic framework that enables computation of the
deployment cost of a network (modeled using various spatial point processes) to
answer the question posed by the paper's title. Then, the framework obtained is
used along with a complexity model, which enables computing the information
processing costs of a network, to compare the deployment cost of a cloud based
network against that of a traditional LTE network, and to analyze why they are
more economical. Using this framework and an exemplary budget, this paper shows
that cloud-based radio access networks require approximately 10 to 15% less
capital expenditure per square kilometer than traditional LTE networks. It also
demonstrates that the cost savings depend largely on the costs of base stations
and the mix of backhaul technologies used to connect base stations with data
centers.Comment: accepted for publication, 2015 IEEE Journal on Selected Areas in
Communicatio
- …
