1,740 research outputs found

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Massive M2M Access with Reliability Guarantees in LTE Systems

    Full text link
    Machine-to-Machine (M2M) communications are one of the major drivers of the cellular network evolution towards 5G systems. One of the key challenges is on how to provide reliability guarantees to each accessing device in a situation in which there is a massive number of almost-simultaneous arrivals from a large set of M2M devices. The existing solutions take a reactive approach in dealing with massive arrivals, such as non-selective barring when a massive arrival event occurs, which implies that the devices cannot get individual reliability guarantees. In this paper we propose a proactive approach, based on a standard operation of the cellular access. The access procedure is divided into two phases, an estimation phase and a serving phase. In the estimation phase the number of arrivals is estimated and this information is used to tune the amount of resources allocated in the serving phase. Our results show that the proactive approach is instrumental in delivering high access reliability to the M2M devices.Comment: Accepted for presentation in ICC 201

    A Delay-Optimal Packet Scheduler for M2M Uplink

    Full text link
    In this paper, we present a delay-optimal packet scheduler for processing the M2M uplink traffic at the M2M application server (AS). Due to the delay-heterogeneity in uplink traffic, we classify it broadly into delay-tolerant and delay-sensitive traffic. We then map the diverse delay requirements of each class to sigmoidal functions of packet delay and formulate a utility-maximization problem that results in a proportionally fair delay-optimal scheduler. We note that solving this optimization problem is equivalent to solving for the optimal fraction of time each class is served with (preemptive) priority such that it maximizes the system utility. Using Monte-Carlo simulations for the queuing process at AS, we verify the correctness of the analytical result for optimal scheduler and show that it outperforms other state-of-the-art packet schedulers such as weighted round robin, max-weight scheduler, fair scheduler and priority scheduling. We also note that at higher traffic arrival rate, the proposed scheduler results in a near-minimal delay variance for the delay-sensitive traffic which is highly desirable. This comes at the expense of somewhat higher delay variance for delay-tolerant traffic which is usually acceptable due to its delay-tolerant nature.Comment: Accepted for publication in IEEE MILCOM 2016 (6 pages, 7 figures
    • …
    corecore