1,245 research outputs found

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Formal Verification of Real-time Systems with Preemptive Scheduling

    Get PDF
    International audienceIn this paper, we propose a method for the verification of timed properties for real-time systems featuring a preemptive scheduling policy: the system, modeled as a scheduling time Petri net, is first translated into a linear hybrid automaton to which it is time-bisimilar. Timed properties can then be verified using HyTech. The efficiency of this approach leans on two major points: first, the translation features a minimization of the number of variables (clocks) of the resulting automaton, which is a critical parameter for the efficiency of the ensuing verification. Second, the translation is performed by an over-approximating algorithm, which is based on Difference Bound Matrix and therefore efficient, that nonetheless produces a time-bisimilar automaton despite the over-approximation. The proposed modeling and verification method are generic enough to account for many scheduling policies. In this paper, we specifically show how to deal with Fixed Priority and Earliest Deadline First policies, with the possibility of using Round-Robin for tasks with the same priority. We have implemented the method and give some experimental results illustrating its efficiency

    Presentation of the 9th Edition of the Model Checking Contest.

    Get PDF
    International audience; The Model Checking Contest (MCC) is an annual competition of software tools for model checking. Tools must process an increasing benchmark gathered from the whole community and may participate in various examinations: state space generation, computation of global properties, computation of some upper bounds in the model, evaluation of reachability formulas, evaluation of CTL formulas, and evaluation of LTL formulas.For each examination and each model instance, participating tools are provided with up to 3600 s and 16 gigabyte of memory. Then, tool answers are analyzed and confronted to the results produced by other competing tools to detect diverging answers (which are quite rare at this stage of the competition, and lead to penalties).For each examination, golden, silver, and bronze medals are attributed to the three best tools. CPU usage and memory consumption are reported, which is also valuable information for tool developers

    Monotonic Abstraction Techniques: from Parametric to Software Model Checking

    Full text link
    Monotonic abstraction is a technique introduced in model checking parameterized distributed systems in order to cope with transitions containing global conditions within guards. The technique has been re-interpreted in a declarative setting in previous papers of ours and applied to the verification of fault tolerant systems under the so-called "stopping failures" model. The declarative reinterpretation consists in logical techniques (quantifier relativizations and, especially, quantifier instantiations) making sense in a broader context. In fact, we recently showed that such techniques can over-approximate array accelerations, so that they can be employed as a meaningful (and practically effective) component of CEGAR loops in software model checking too.Comment: In Proceedings MOD* 2014, arXiv:1411.345

    Performance Analysis of Live-Virtual-Constructive and Distributed Virtual Simulations: Defining Requirements in Terms of Temporal Consistency

    Get PDF
    This research extends the knowledge of live-virtual-constructive (LVC) and distributed virtual simulations (DVS) through a detailed analysis and characterization of their underlying computing architecture. LVCs are characterized as a set of asynchronous simulation applications each serving as both producers and consumers of shared state data. In terms of data aging characteristics, LVCs are found to be first-order linear systems. System performance is quantified via two opposing factors; the consistency of the distributed state space, and the response time or interaction quality of the autonomous simulation applications. A framework is developed that defines temporal data consistency requirements such that the objectives of the simulation are satisfied. Additionally, to develop simulations that reliably execute in real-time and accurately model hierarchical systems, two real-time design patterns are developed: a tailored version of the model-view-controller architecture pattern along with a companion Component pattern. Together they provide a basis for hierarchical simulation models, graphical displays, and network I/O in a real-time environment. For both LVCs and DVSs the relationship between consistency and interactivity is established by mapping threads created by a simulation application to factors that control both interactivity and shared state consistency throughout a distributed environment

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts

    Combining dynamic and static scheduling in high-level synthesis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are starting to become mainstream devices for custom computing, particularly deployed in data centres. However, using these FPGA devices requires familiarity with digital design at a low abstraction level. In order to enable software engineers without a hardware background to design custom hardware, high-level synthesis (HLS) tools automatically transform a high-level program, for example in C/C++, into a low-level hardware description. A central task in HLS is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile time, but recent years have seen the emergence of dynamic scheduling, in which an operation’s clock cycle is only determined at run-time. Both approaches have their merits: static scheduling can lead to simpler circuitry and more resource sharing, while dynamic scheduling can lead to faster hardware when the computation has a non-trivial control flow. This thesis proposes a scheduling approach that combines the best of both worlds. My idea is to use existing program analysis techniques in software designs, such as probabilistic analysis and formal verification, to optimize the HLS hardware. First, this thesis proposes a tool named DASS that uses a heuristic-based approach to identify the code regions in the input program that are amenable to static scheduling and synthesises them into statically scheduled components, also known as static islands, leaving the top-level hardware dynamically scheduled. Second, this thesis addresses a problem of this approach: that the analysis of static islands and their dynamically scheduled surroundings are separate, where one treats the other as black boxes. We apply static analysis including dependence analysis between static islands and their dynamically scheduled surroundings to optimize the offsets of static islands for high performance. We also apply probabilistic analysis to estimate the performance of the dynamically scheduled part and use this information to optimize the static islands for high area efficiency. Finally, this thesis addresses the problem of conservatism in using sequential control flow designs which can limit the throughput of the hardware. We show this challenge can be solved by formally proving that certain control flows can be safely parallelised for high performance. This thesis demonstrates how to use automated formal verification to find out-of-order loop pipelining solutions and multi-threading solutions from a sequential program.Open Acces

    Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    Get PDF
    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps
    corecore