2,113 research outputs found

    MQGrad: Reinforcement Learning of Gradient Quantization in Parameter Server

    Full text link
    One of the most significant bottleneck in training large scale machine learning models on parameter server (PS) is the communication overhead, because it needs to frequently exchange the model gradients between the workers and servers during the training iterations. Gradient quantization has been proposed as an effective approach to reducing the communication volume. One key issue in gradient quantization is setting the number of bits for quantizing the gradients. Small number of bits can significantly reduce the communication overhead while hurts the gradient accuracies, and vise versa. An ideal quantization method would dynamically balance the communication overhead and model accuracy, through adjusting the number bits according to the knowledge learned from the immediate past training iterations. Existing methods, however, quantize the gradients either with fixed number of bits, or with predefined heuristic rules. In this paper we propose a novel adaptive quantization method within the framework of reinforcement learning. The method, referred to as MQGrad, formalizes the selection of quantization bits as actions in a Markov decision process (MDP) where the MDP states records the information collected from the past optimization iterations (e.g., the sequence of the loss function values). During the training iterations of a machine learning algorithm, MQGrad continuously updates the MDP state according to the changes of the loss function. Based on the information, MDP learns to select the optimal actions (number of bits) to quantize the gradients. Experimental results based on a benchmark dataset showed that MQGrad can accelerate the learning of a large scale deep neural network while keeping its prediction accuracies.Comment: 7 pages, 5 figure

    On Periodic Functions as Regularizers for Quantization of Neural Networks

    Full text link
    Deep learning models have been successfully used in computer vision and many other fields. We propose an unorthodox algorithm for performing quantization of the model parameters. In contrast with popular quantization schemes based on thresholds, we use a novel technique based on periodic functions, such as continuous trigonometric sine or cosine as well as non-continuous hat functions. We apply these functions component-wise and add the sum over the model parameters as a regularizer to the model loss during training. The frequency and amplitude hyper-parameters of these functions can be adjusted during training. The regularization pushes the weights into discrete points that can be encoded as integers. We show that using this technique the resulting quantized models exhibit the same accuracy as the original ones on CIFAR-10 and ImageNet datasets.Comment: 11 pages, 7 figure

    A Survey of Model Compression and Acceleration for Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past five years, tremendous progress has been made in this area. In this paper, we review the recent techniques for compacting and accelerating DNN models. In general, these techniques are divided into four categories: parameter pruning and quantization, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and quantization are described first, after that the other techniques are introduced. For each category, we also provide insightful analysis about the performance, related applications, advantages, and drawbacks. Then we go through some very recent successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrices, the main datasets used for evaluating the model performance, and recent benchmark efforts. Finally, we conclude this paper, discuss remaining the challenges and possible directions for future work.Comment: Published in IEEE Signal Processing Magazine, updated version including more recent work

    BitNet: Bit-Regularized Deep Neural Networks

    Full text link
    We present a novel optimization strategy for training neural networks which we call "BitNet". The parameters of neural networks are usually unconstrained and have a dynamic range dispersed over all real values. Our key idea is to limit the expressive power of the network by dynamically controlling the range and set of values that the parameters can take. We formulate this idea using a novel end-to-end approach that circumvents the discrete parameter space by optimizing a relaxed continuous and differentiable upper bound of the typical classification loss function. The approach can be interpreted as a regularization inspired by the Minimum Description Length (MDL) principle. For each layer of the network, our approach optimizes real-valued translation and scaling factors and arbitrary precision integer-valued parameters (weights). We empirically compare BitNet to an equivalent unregularized model on the MNIST and CIFAR-10 datasets. We show that BitNet converges faster to a superior quality solution. Additionally, the resulting model has significant savings in memory due to the use of integer-valued parameters

    Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools

    Full text link
    Deep Learning (DL) has had an immense success in the recent past, leading to state-of-the-art results in various domains such as image recognition and natural language processing. One of the reasons for this success is the increasing size of DL models and the proliferation of vast amounts of training data being available. To keep on improving the performance of DL, increasing the scalability of DL systems is necessary. In this survey, we perform a broad and thorough investigation on challenges, techniques and tools for scalable DL on distributed infrastructures. This incorporates infrastructures for DL, methods for parallel DL training, multi-tenant resource scheduling and the management of training and model data. Further, we analyze and compare 11 current open-source DL frameworks and tools and investigate which of the techniques are commonly implemented in practice. Finally, we highlight future research trends in DL systems that deserve further research.Comment: accepted at ACM Computing Surveys, to appea

    A Survey on Methods and Theories of Quantized Neural Networks

    Full text link
    Deep neural networks are the state-of-the-art methods for many real-world tasks, such as computer vision, natural language processing and speech recognition. For all its popularity, deep neural networks are also criticized for consuming a lot of memory and draining battery life of devices during training and inference. This makes it hard to deploy these models on mobile or embedded devices which have tight resource constraints. Quantization is recognized as one of the most effective approaches to satisfy the extreme memory requirements that deep neural network models demand. Instead of adopting 32-bit floating point format to represent weights, quantized representations store weights using more compact formats such as integers or even binary numbers. Despite a possible degradation in predictive performance, quantization provides a potential solution to greatly reduce the model size and the energy consumption. In this survey, we give a thorough review of different aspects of quantized neural networks. Current challenges and trends of quantized neural networks are also discussed.Comment: 17 pages, 8 figure

    L1-Norm Batch Normalization for Efficient Training of Deep Neural Networks

    Full text link
    Batch Normalization (BN) has been proven to be quite effective at accelerating and improving the training of deep neural networks (DNNs). However, BN brings additional computation, consumes more memory and generally slows down the training process by a large margin, which aggravates the training effort. Furthermore, the nonlinear square and root operations in BN also impede the low bit-width quantization techniques, which draws much attention in deep learning hardware community. In this work, we propose an L1-norm BN (L1BN) with only linear operations in both the forward and the backward propagations during training. L1BN is shown to be approximately equivalent to the original L2-norm BN (L2BN) by multiplying a scaling factor. Experiments on various convolutional neural networks (CNNs) and generative adversarial networks (GANs) reveal that L1BN maintains almost the same accuracies and convergence rates compared to L2BN but with higher computational efficiency. On FPGA platform, the proposed signum and absolute operations in L1BN can achieve 1.5×\times speedup and save 50\% power consumption, compared with the original costly square and root operations, respectively. This hardware-friendly normalization method not only surpasses L2BN in speed, but also simplify the hardware design of ASIC accelerators with higher energy efficiency. Last but not the least, L1BN promises a fully quantized training of DNNs, which is crucial to future adaptive terminal devices.Comment: 8 pages, 4 figure

    Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing

    Full text link
    With the breakthroughs in deep learning, the recent years have witnessed a booming of artificial intelligence (AI) applications and services, spanning from personal assistant to recommendation systems to video/audio surveillance. More recently, with the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the AI frontiers to the network edge so as to fully unleash the potential of the edge big data. To meet this demand, edge computing, an emerging paradigm that pushes computing tasks and services from the network core to the network edge, has been widely recognized as a promising solution. The resulted new inter-discipline, edge AI or edge intelligence, is beginning to receive a tremendous amount of interest. However, research on edge intelligence is still in its infancy stage, and a dedicated venue for exchanging the recent advances of edge intelligence is highly desired by both the computer system and artificial intelligence communities. To this end, we conduct a comprehensive survey of the recent research efforts on edge intelligence. Specifically, we first review the background and motivation for artificial intelligence running at the network edge. We then provide an overview of the overarching architectures, frameworks and emerging key technologies for deep learning model towards training/inference at the network edge. Finally, we discuss future research opportunities on edge intelligence. We believe that this survey will elicit escalating attentions, stimulate fruitful discussions and inspire further research ideas on edge intelligence.Comment: Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing," Proceedings of the IEE

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    Learning based Facial Image Compression with Semantic Fidelity Metric

    Full text link
    Surveillance and security scenarios usually require high efficient facial image compression scheme for face recognition and identification. While either traditional general image codecs or special facial image compression schemes only heuristically refine codec separately according to face verification accuracy metric. We propose a Learning based Facial Image Compression (LFIC) framework with a novel Regionally Adaptive Pooling (RAP) module whose parameters can be automatically optimized according to gradient feedback from an integrated hybrid semantic fidelity metric, including a successfully exploration to apply Generative Adversarial Network (GAN) as metric directly in image compression scheme. The experimental results verify the framework's efficiency by demonstrating performance improvement of 71.41%, 48.28% and 52.67% bitrate saving separately over JPEG2000, WebP and neural network-based codecs under the same face verification accuracy distortion metric. We also evaluate LFIC's superior performance gain compared with latest specific facial image codecs. Visual experiments also show some interesting insight on how LFIC can automatically capture the information in critical areas based on semantic distortion metrics for optimized compression, which is quite different from the heuristic way of optimization in traditional image compression algorithms.Comment: Accepted by Neurocomputin
    • …
    corecore