25,951 research outputs found

    Visualizing classification of natural video sequences using sparse, hierarchical models of cortex.

    Get PDF
    Recent work on hierarchical models of visual cortex has reported state-of-the-art accuracy on whole-scene labeling using natural still imagery. This raises the question of whether the reported accuracy may be due to the sophisticated, non-biological back-end supervised classifiers typically used (support vector machines) and/or the limited number of images used in these experiments. In particular, is the model classifying features from the object or the background? Previous work (Landecker, Brumby, et al., COSYNE 2010) proposed tracing the spatial support of a classifier’s decision back through a hierarchical cortical model to determine which parts of the image contributed to the classification, compared to the positions of objects in the scene. In this way, we can go beyond standard measures of accuracy to provide tools for visualizing and analyzing high-level object classification. We now describe new work exploring the extension of these ideas to detection of objects in video sequences of natural scenes

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure
    corecore