32,749 research outputs found

    Practical Abstraction for Model Checking of Multi-Agent Systems

    Full text link
    Model checking of multi-agent systems (MAS) is known to be hard, both theoretically and in practice. A smart abstraction of the state space may significantly reduce the model, and facilitate the verification. In this paper, we propose and study an intuitive agent-based abstraction scheme, based on the removal of variables in the representation of a MAS. This allows to do the reduction without generating the global model of the system. Moreover, the process is easy to understand and control even for domain experts with little knowledge of computer science. We formally prove the correctness of the approach, and evaluate the gains experimentally on models of a postal voting procedure

    Scalable Verification of Strategy Logic through Three-valued Abstraction

    Full text link
    The model checking problem for multi-agent systems against Strategy Logic specifications is known to be non-elementary. On this logic several fragments have been defined to tackle this issue but at the expense of expressiveness. In this paper, we propose a three-valued semantics for Strategy Logic upon which we define an abstraction method. We show that the latter semantics is an approximation of the classic two-valued one for Strategy Logic. Furthermore, we extend MCMAS, an open-source model checker for multi-agent specifications, to incorporate our abstraction method and present some promising experimental results

    Probabilistic model checking multi-agent behaviors in dispersion games using counter abstraction

    Get PDF
    Accurate analysis of the stochastic dynamics of multi-agent system is important but challenging. Probabilistic model checking, a formal technique for analysing a system which exhibits stochastic behaviors, can be a natural solution to analyse multi-agent systems. In this paper, we investigate this problem in the context of dispersion games focusing on two strategies: basic simple strategy (BSS) and extended simple strategies (ESS). We model the system using discrete-time Markov chain (DTMC) and reduce the state space of the models by applying counter abstraction technique. Two important properties of the system are considered: convergence and convergence rate. We show that these kinds of properties can be automatically analysed and verified using probabilistic model checking techniques. Better understanding of the dynamics of the strategies can be obtained compared with empirical evaluations in previous work. Through the analysis, we are able to demonstrate that probabilistic model checking technique is applicable, and indeed useful for automatic analysis and verification of multi-agent dynamics.No Full Tex

    Model checking ontology-driven reasoning agents using strategy and abstraction

    Get PDF
    We present a framework for the modelling, specification and verification of ontology-driven multi-agent rule-based systems (MASs). We assume that each agent executes in a separate process and that they communicate via message passing. The proposed approach makes use of abstract specifications to model the behaviour of some of the agents in the system, and exploits information about the reasoning strategy adopted by the agents. Abstract specifications are given as Linear Temporal Logic (LTL) formulas which describe the external behaviour of the agents, allowing their temporal behaviour to be compactly modelled. Both abstraction and strategy have been combined in an automated model checking encoding tool Tovrba for rule-based multi-agent systems which allows the system designer to specify information about agents' interaction, behaviour, and execution strategy at different levels of abstraction. The Tovrba tool generates an encoding of the system for the Maude LTL model checker, allowing properties of the system to be verified

    Model checking GSM-based multi-agent systems

    Get PDF
    Business artifacts are a growing topic in service oriented computing. Artifact systems include both data and process descriptions at interface level thereby providing more sophisticated and powerful service inter-operation capabilities. The Guard-Stage-Milestone (GSM) language provides a novel framework for specifying artifact systems that features declarative descriptions of the intended behaviour without requiring an explicit specification of the control flow. While much of the research is focused on the design, deployment and maintenance of GSM programs, the verification of this formalism has received less attention. This thesis aims to contribute to the topic. We put forward a holistic methodology for the practical verification of GSM-based multi-agent systems via model checking. The formal verification faces several challenges: the declarative nature of GSM programs; the mechanisms for data hiding and access control; and the infinite state spaces inherent in the underlying data. We address them in stages. First, we develop a symbolic representation of GSM programs, which makes them amenable to model checking. We then extend GSM to multi-agent systems and map it into a variant of artifact-centric multi-agent systems (AC-MAS), a paradigm based on interpreted systems. This allows us to reason about the knowledge the agents have about the artifact system. Lastly, we investigate predicate abstraction as a key technique to overcome the difficulty of verifying infinite state spaces. We present a technique that lifts 3-valued abstraction to epistemic logic and makes GSM programs amenable to model checking against specifications written in a quantified version of temporal-epistemic logic. The theory serves as a basis for developing a symbolic model checker that implements SMT-based, 3-valued abstraction for GSM-based multi-agent systems. The feasibility of the implementation is demonstrated by verifying GSM programs for concrete applications from the service community.Open Acces

    Verifying Multi-Agent Systems by Model Checking Three-valued Abstractions

    Get PDF
    ABSTRACT We develop the theoretical foundations of a predicate abstraction methodology for the verification of multi-agent systems. We put forward a specification language based on epistemic logic and a weak variant of the logic ATL interpreted on a three-valued semantics. We show that the model checking problem for multi-agent systems in this setting is tractable by giving a provably correct procedure which admits a PTime bound. We give a constructive technique for generating abstract approximations of concrete multiagent systems models and show that the truth values are preserved between abstract and concrete models. We evaluate the effectiveness of the methodology on a variant of the bit-transmission problem

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    Model checking learning agent systems using Promela with embedded C code and abstraction

    Get PDF
    As autonomous systems become more prevalent, methods for their verification will become more widely used. Model checking is a formal verification technique that can help ensure the safety of autonomous systems, but in most cases it cannot be applied by novices, or in its straight \off-the-shelf" form. In order to be more widely applicable it is crucial that more sophisticated techniques are used, and are presented in a way that is reproducible by engineers and verifiers alike. In this paper we demonstrate in detail two techniques that are used to increase the power of model checking using the model checker SPIN. The first of these is the use of embedded C code within Promela specifications, in order to accurately re ect robot movement. The second is to use abstraction together with a simulation relation to allow us to verify multiple environments simultaneously. We apply these techniques to a fairly simple system in which a robot moves about a fixed circular environment and learns to avoid obstacles. The learning algorithm is inspired by the way that insects learn to avoid obstacles in response to pain signals received from their antennae. Crucially, we prove that our abstraction is sound for our example system { a step that is often omitted but is vital if formal verification is to be widely accepted as a useful and meaningful approach

    Hybrid automata dicretising agents for formal modelling of robots

    No full text
    Some of the fundamental capabilities required by autonomous vehicles and systems for their intelligent decision making are: modelling of the environment and forming data abstractions for symbolic, logic based reasoning. The paper formulates a discrete agent framework that abstracts and controls a hybrid system that is a composition of hybrid automata modelled continuous individual processes. Theoretical foundations are laid down for a class of general model composition agents (MCAs) with an advanced subclass of rational physical agents (RPAs). We define MCAs as the most basic structures for the description of complex autonomous robotic systems. The RPAā€™s have logic based decision making that is obtained by an extension of the hybrid systems concepts using a set of abstractions. The theory presented helps the creation of robots with reliable performance and safe operation in their environment. The paper emphasizes the abstraction aspects of the overall hybrid system that emerges from parallel composition of sets of RPAs and MCAs

    A counter abstraction technique for the verification of robot swarms.

    Get PDF
    We study parameterised verification of robot swarms against temporal-epistemic specifications. We relax some of the significant restrictions assumed in the literature and present a counter abstraction approach that enable us to verify a potentially much smaller abstract model when checking a formula on a swarm of any size. We present an implementation and discuss experimental results obtained for the alpha algorithm for robot swarms
    • ā€¦
    corecore