11 research outputs found

    Reachability analysis of linear hybrid systems via block decomposition

    Get PDF
    Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.Comment: Accepted at EMSOFT 202

    Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices

    Full text link
    Approximating the set of reachable states of a dynamical system is an algorithmic yet mathematically rigorous way to reason about its safety. Although progress has been made in the development of efficient algorithms for affine dynamical systems, available algorithms still lack scalability to ensure their wide adoption in the industrial setting. While modern linear algebra packages are efficient for matrices with tens of thousands of dimensions, set-based image computations are limited to a few hundred. We propose to decompose reach set computations such that set operations are performed in low dimensions, while matrix operations like exponentiation are carried out in the full dimension. Our method is applicable both in dense- and discrete-time settings. For a set of standard benchmarks, it shows a speed-up of up to two orders of magnitude compared to the respective state-of-the art tools, with only modest losses in accuracy. For the dense-time case, we show an experiment with more than 10.000 variables, roughly two orders of magnitude higher than possible with previous approaches

    An hybrid system approach to nonlinear optimal control problems

    Full text link
    We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target

    On the Trade-off Between Efficiency and Precision of Neural Abstraction

    Full text link
    Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models. They comprise a neural ODE and a certified upper bound on the error between the abstract neural network and the concrete dynamical model. So far neural abstractions have exclusively been obtained as neural networks consisting entirely of ReLUReLU activation functions, resulting in neural ODE models that have piecewise affine dynamics, and which can be equivalently interpreted as linear hybrid automata. In this work, we observe that the utility of an abstraction depends on its use: some scenarios might require coarse abstractions that are easier to analyse, whereas others might require more complex, refined abstractions. We therefore consider neural abstractions of alternative shapes, namely either piecewise constant or nonlinear non-polynomial (specifically, obtained via sigmoidal activations). We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics. Empirically, we demonstrate the trade-off that these different neural abstraction templates have vis-a-vis their precision and synthesis time, as well as the time required for their safety verification (done via reachability computation). We improve existing synthesis techniques to enable abstraction of higher-dimensional models, and additionally discuss the abstraction of complex neural ODEs to improve the efficiency of reachability analysis for these models.Comment: To appear at QEST 202

    Semiotics and Human-Robot Interaction

    Get PDF
    Keywords: Semi-autonomous robot, human-robot interaction, semiotics. Abstract: This paper describes a robot control architecture supported on a human-robot interaction model obtained directly from semiotics concepts. The architecture is composed of a set of objects defined after a semiotic sign model. Simulation experiments using unicycle robots are presented that illustrate the interactions within a team of robots equipped with skills similar to those used in human-robot interactions.

    Approximation Metrics for Discrete and Continuous Systems

    Full text link

    Semiotics and Human-Robot Interaction

    Get PDF

    Abstraction by Projection and Application to Multi-affine Systems

    No full text
    International audienceIn this paper we present an abstraction method for nonlinear continuous systems. The main idea of our method is to project out some continuous variables, say z, and treat them in the dynamics of the remaining variables x as uncertain input. Therefore, the dynamics of x is then described by a differential inclusion. In addition, in order to avoid excessively conservative abstractions, the domains of the projected variables are divided into smaller regions corresponding to different differential inclusions. The final result of our abstraction procedure is a hybrid system of lower dimension with some important properties that guarantee convergence results. The applicability of this abstraction approach depends on the ability to deal with differential inclusions. We then focus on uncertain bilinear systems, a simple yet useful class of nonlinear differential inclusions, and develop a reachability technique using optimal control. The combination of the abstraction method and the reachability analysis technique for bilinear systems allows to treat multi-affine systems, which is illustrated with a biological system
    corecore