48,443 research outputs found

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    Vertical Implementation

    Get PDF
    We investigate criteria to relate specifications and implementations belonging to conceptually different levels of abstraction. For this purpose, we introduce the generic concept of a vertical implementation relation, which is a family of binary relations indexed by a refinement function that maps abstract actions onto concrete processes and thus determines the basic connection between the abstraction levels. If the refinement function is the identity, the vertical implementation relation collapses to a standard (horizontal) implementation relation. As desiderata for vertical implementation relations we formulate a number of congruence-like proof rules (notably a structural rule for recursion) that offer a powerful, compositional proof technique for vertical implementation. As a candidate vertical implementation relation we propose vertical bisimulation. Vertical bisimulation is compatible with the standard interleaving semantics of process algebra; in fact, the corresponding horizontal relation is rooted weak bisimulation. We prove that vertical bisimulation satisfies the proof rules for vertical implementation, thus establishing the consistency of the rules. Moreover, we define a corresponding notion of abstraction that strengthens the intuition behind vertical bisimulation and also provides a decision algorithm for finite-state systems. Finally, we give a number of small examples to demonstrate the advantages of vertical implementation in general and vertical bisimulation in particular.\u

    Architectural notes: a framework for distributed systems development

    Get PDF
    This thesis develops a framework of methods and techniques for distributed systems development. This framework consists of two related domains in which design concepts for distributed systems are defined: the entity domain and the behaviour domain. In the entity domain we consider structures of functional entities and their interconnection, while in the behaviour domain we consider behaviour definition and structuring. An interaction in which we abstract from the particular responsibilities of the participating functional entities is considered as an action. Behaviours consist of actions, interactions and their relationships. Relationships between actions and interactions are defined in terms of causality relations. In each causality relation the conditions and constraints for an action or interaction to occur are defined. Two important behaviour structuring techniques have been identified from the possible ways causality relations can be distributed: causality-oriented behaviour composition and constraint-oriented behaviour composition. Causality-oriented behaviour composition consists of placing some conditions of an action and the action itself in different sub-behaviours. Constraint-oriented behaviour composition consists of placing parts of the conditions and constraints of an action in different sub-behaviours, such that this action is shared by these sub-behaviours. This thesis identifies milestones in the design process of distributed systems, as well as the design steps to move from one milestone to another. These design steps are characterized using the concepts of the entity and the behaviour domain. We identified two crucial design operations of the behaviour domain that support these design steps: behaviour refinement and action refinement. Behaviour refinement consists of introducing (internal) structure in the causality relations of reference actions of an abstract behaviour, but preserving their causality and exclusion relationships and their attribute values. Action refinement consists of replacing abstract actions by activities, such that the completion of these activities correspond to the occurrence of the abstract actions. One important characteristic of action refinement is the possibility of distributing attribute values of the abstract actions over actions of the activities that replace them in the concrete behaviours. The area of research, scope and objectives of this thesis are discussed in Chapter 1. The concept of design culture and its elements is introduced in this chapter in order to provide an overview of the important aspects of the design process. Entity domain, behaviour domain, and design milestones are introduced and discussed in Chapter 2. This chapter also discusses the global objectives of design steps, and the abstraction obtained by considering interactions between cooperating functional entities as actions of the interaction system between these entities. Action, action attributes, causality and exclusion are discussed in Chapter 3. This chapter shows how a behaviour can be defined in terms of the causality relations of its actions in a monolithic form. Causality-oriented behaviour composition is discussed in Chapter 4. Entries and exits of a behaviour are the mechanisms that make it possible to assign parts of a condition of an action and the action itself to different sub-behaviours. Constraint-oriented behaviour composition is discussed in Chapter 5. Decomposition possibilities of monolithic behaviours are systematically studied in this chapter. Behaviour refinement is discussed in Chapter 6. This chapter defines a method to obtain an abstraction of a concrete behaviour. This method can be used to check whether the concrete behaviour corresponds to a certain abstract behaviour. Action refinement is discussed in Chapter 7. This chapter identifies some activity forms, and define the rules for considering these activities as implementations of an abstract action. These rules are used in a method to derive an abstraction of a concrete behaviour in which the abstract actions are implemented as activities. This method can be used to check whether the concrete behaviour corresponds to a certain abstract behaviour. Chapter 8 discusses a design example that is meant to illustrate the use of our design concepts. The example is an interaction server, which is a component that supports the interaction between multiple functional entities. Chapter 9 draws some conclusions and revisits the design milestones of Chapter 2, showing alternatives for the design trajectory which have been created with the use of actions and interactions in a single framework

    A model-based approach to service creation

    Get PDF
    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed functional parts, until these parts can be mapped onto software components. A modelling language is used to express and enable analysis of the resulting designs, in particular the behaviour aspects. Methods are needed to verify the correctness of each design step. A technique called behaviour refinement is introduced to assess the conformance relation between an abstract behaviour and a more concrete (detailed) behaviour. This technique is based on the application of abstraction rules to determine the abstraction of the concrete behaviour such that the obtained abstraction can be compared to the original abstract behaviour. The application of this refinement technique throughout the creation process enforces the correctness of the created servic

    An Engineering Approach towards Action Refinement

    Get PDF
    In the abstract modelling of distributed systems we may need methods to replace abstract behaviours by more concrete behaviours which are closer to implementation mechanisms. Furthermore, we may want these methods to preserve the correctness of such a replacement. This paper introduces an approach towards action refinement in which an abstract action is replaced by a concrete activity. This approach is based on a careful consideration of the `action' and `causality relation' architectural concepts, which enable an abstract action to be replaced by many alternative concrete activities in a general way. This approach is based on the application of abstraction rules to determine whether a concrete activity conforms to an abstract action, considering the context in which the concrete activity and the abstract action are embedde

    A Rigorous Approach to Relate Enterprise and Computational Viewpoints

    Get PDF
    Multiviewpoint approaches allow stakeholders to design a system from stakeholder-specific viewpoints. By this, a separation of concerns is achieved, which makes designs more manageable. However, to construct a consistent multiviewpoint design, the relations between viewpoints must be defined precisely, so that the consistency of designs from these viewpoints can be verified. The goal of this paper is to make the consistency rules between (a slightly adapted version of) the RM-ODP enterprise and computational viewpoints more precise and to make checking the consistency between these viewpoints practically applicable. To achieve this goal, we apply a generic framework for relating viewpoints that includes reusable consistency rules. We implemented the consistency rules in a tool to show their applicability

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints

    MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata

    Full text link
    Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single model. They represent an important and powerful way to model a wide range of complex real-life systems. However, such models tend to be large and difficult to handle, making abstraction and abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic automata. First experiments show that a significant reduction in size is possible using abstraction.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed

    On interoperability and conformance assessment in service composition

    Get PDF
    The process of composing a service from other services typically involves multiple models. These models may represent the service from distinct perspectives, e.g., to model the different roles of systems involved in the service, and at distinct abstraction levels, e.g., to model the service’s capability, interface or the orchestration that implements the service. The consistency among these models needs to be maintained in order to guarantee the correctness of the composition process. Two types of consistency relations are distinguished: interoperability, which concerns the ability of different roles to interoperate, and conformance, which concerns the correct implementation of an abstract model by a more concrete model. This paper discusses the need for and use of techniques to assess interoperability and conformance in a service composition process. The paper shows how these consistency relations can be described and analysed using concepts from the COSMO framework. Examples are presented to illustrate how interoperability and conformance can be assessed
    corecore