60,049 research outputs found

    Relating Nominal and Higher-order Abstract Syntax Specifications

    Full text link
    Nominal abstract syntax and higher-order abstract syntax provide a means for describing binding structure which is higher-level than traditional techniques. These approaches have spawned two different communities which have developed along similar lines but with subtle differences that make them difficult to relate. The nominal abstract syntax community has devices like names, freshness, name-abstractions with variable capture, and the new-quantifier, whereas the higher-order abstract syntax community has devices like lambda-binders, lambda-conversion, raising, and the nabla-quantifier. This paper aims to unify these communities and provide a concrete correspondence between their different devices. In particular, we develop a semantics-preserving translation from alpha-Prolog, a nominal abstract syntax based logic programming language, to G-, a higher-order abstract syntax based logic programming language. We also discuss higher-order judgments, a common and powerful tool for specifications with higher-order abstract syntax, and we show how these can be incorporated into G-. This establishes G- as a language with the power of higher-order abstract syntax, the fine-grained variable control of nominal specifications, and the desirable properties of higher-order judgments.Comment: To appear in PPDP 201

    Structural abstract interpretation, A formal study using Coq

    Get PDF
    interpreters are tools to compute approximations for behaviors of a program. These approximations can then be used for optimisation or for error detection. In this paper, we show how to describe an abstract interpreter using the type-theory based theorem prover Coq, using inductive types for syntax and structural recursive programming for the abstract interpreter's kernel. The abstract interpreter can then be proved correct with respect to a Hoare logic for the programming language

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    Abstract syntax and logic programming

    Full text link
    • …
    corecore