337,909 research outputs found

    Statistical and Computational Tradeoff in Genetic Algorithm-Based Estimation

    Full text link
    When a Genetic Algorithm (GA), or a stochastic algorithm in general, is employed in a statistical problem, the obtained result is affected by both variability due to sampling, that refers to the fact that only a sample is observed, and variability due to the stochastic elements of the algorithm. This topic can be easily set in a framework of statistical and computational tradeoff question, crucial in recent problems, for which statisticians must carefully set statistical and computational part of the analysis, taking account of some resource or time constraints. In the present work we analyze estimation problems tackled by GAs, for which variability of estimates can be decomposed in the two sources of variability, considering some constraints in the form of cost functions, related to both data acquisition and runtime of the algorithm. Simulation studies will be presented to discuss the statistical and computational tradeoff question.Comment: 17 pages, 5 figure

    On Cournot-Nash equilibria with exogenous uncertainty

    Get PDF
    A large body of literature has accumulated which examines how the optimal solution of an agent maximizing the expectation of a real-valued function, depending on a random parameterp and the agent's behaviorx, reacts to perturbations in the first and second moments ofp. Here, by an approximation valid for small uncertainty, we allow many agents and consider their behavior in a Cournot-Nash equilibrium. We also allowp to depend on the behaviors of the participating agents. We apply the analysis to two models, one of a Cournot oligopoly, the other of a cooperative of individuals where there is uncertainty in the return to communal work

    Conditionals in Homomorphic Encryption and Machine Learning Applications

    Get PDF
    Homomorphic encryption aims at allowing computations on encrypted data without decryption other than that of the final result. This could provide an elegant solution to the issue of privacy preservation in data-based applications, such as those using machine learning, but several open issues hamper this plan. In this work we assess the possibility for homomorphic encryption to fully implement its program without relying on other techniques, such as multiparty computation (SMPC), which may be impossible in many use cases (for instance due to the high level of communication required). We proceed in two steps: i) on the basis of the structured program theorem (Bohm-Jacopini theorem) we identify the relevant minimal set of operations homomorphic encryption must be able to perform to implement any algorithm; and ii) we analyse the possibility to solve -- and propose an implementation for -- the most fundamentally relevant issue as it emerges from our analysis, that is, the implementation of conditionals (requiring comparison and selection/jump operations). We show how this issue clashes with the fundamental requirements of homomorphic encryption and could represent a drawback for its use as a complete solution for privacy preservation in data-based applications, in particular machine learning ones. Our approach for comparisons is novel and entirely embedded in homomorphic encryption, while previous studies relied on other techniques, such as SMPC, demanding high level of communication among parties, and decryption of intermediate results from data-owners. Our protocol is also provably safe (sharing the same safety as the homomorphic encryption schemes), differently from other techniques such as Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical section on polynomial approximatio

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Current situation of access to information in Bulgaria 2002

    Get PDF
    • …
    corecore