33,300 research outputs found

    The angular momentum transport by standard MRI in quasi-Kepler cylindric Taylor-Couette flows

    Full text link
    The instability of a quasi-Kepler flow in dissipative Taylor-Couette systems under the presence of an homogeneous axial magnetic field is considered with focus to the excitation of nonaxisymmetric modes and the resulting angular momentum transport. The excitation of nonaxisymmetric modes requires higher rotation rates than the excitation of the axisymmetric mode and this the more the higher the azimuthal mode number m. We find that the weak-field branch in the instability map of the nonaxisymmetric modes has always a positive slope (in opposition to the axisymmetric modes) so that for given magnetic field the modes with m>0 always have an upper limit of the supercritical Reynolds number. In order to excite a nonaxisymmetric mode at 1 AU in a Kepler disk a minimum field strength of about 1 Gauss is necessary. For weaker magnetic field the nonaxisymmetric modes decay. The angular momentum transport of the nonaxisymmetric modes is always positive and depends linearly on the Lundquist number of the background field. The molecular viscosity and the basic rotation rate do not influence the related {\alpha}-parameter. We did not find any indication that the MRI decays for small magnetic Prandtl number as found by use of shearing-box codes. At 1 AU in a Kepler disk and a field strength of about 1 Gauss the {\alpha} proves to be (only) of order 0.005

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Symbolic computation with finite biquandles

    Get PDF
    A method of computing a basis for the second Yang-Baxter cohomology of a finite biquandle with coefficients in Q and Z_p from a matrix presentation of the finite biquandle is described. We also describe a method for computing the Yang-Baxter cocycle invariants of an oriented knot or link represented as a signed Gauss code. We provide a URL for our Maple implementations of these algorithms.Comment: 8 pages. Version 2 has typo corrections and changes suggested by referee. To appear in J. Symbolic Compu

    Discriminated Belief Propagation

    Full text link
    Near optimal decoding of good error control codes is generally a difficult task. However, for a certain type of (sufficiently) good codes an efficient decoding algorithm with near optimal performance exists. These codes are defined via a combination of constituent codes with low complexity trellis representations. Their decoding algorithm is an instance of (loopy) belief propagation and is based on an iterative transfer of constituent beliefs. The beliefs are thereby given by the symbol probabilities computed in the constituent trellises. Even though weak constituent codes are employed close to optimal performance is obtained, i.e., the encoder/decoder pair (almost) achieves the information theoretic capacity. However, (loopy) belief propagation only performs well for a rather specific set of codes, which limits its applicability. In this paper a generalisation of iterative decoding is presented. It is proposed to transfer more values than just the constituent beliefs. This is achieved by the transfer of beliefs obtained by independently investigating parts of the code space. This leads to the concept of discriminators, which are used to improve the decoder resolution within certain areas and defines discriminated symbol beliefs. It is shown that these beliefs approximate the overall symbol probabilities. This leads to an iteration rule that (below channel capacity) typically only admits the solution of the overall decoding problem. Via a Gauss approximation a low complexity version of this algorithm is derived. Moreover, the approach may then be applied to a wide range of channel maps without significant complexity increase

    Discrete Distributions in the Tardos Scheme, Revisited

    Full text link
    The Tardos scheme is a well-known traitor tracing scheme to protect copyrighted content against collusion attacks. The original scheme contained some suboptimal design choices, such as the score function and the distribution function used for generating the biases. Skoric et al. previously showed that a symbol-symmetric score function leads to shorter codes, while Nuida et al. obtained the optimal distribution functions for arbitrary coalition sizes. Later, Nuida et al. showed that combining these results leads to even shorter codes when the coalition size is small. We extend their analysis to the case of large coalitions and prove that these optimal distributions converge to the arcsine distribution, thus showing that the arcsine distribution is asymptotically optimal in the symmetric Tardos scheme. We also present a new, practical alternative to the discrete distributions of Nuida et al. and give a comparison of the estimated lengths of the fingerprinting codes for each of these distributions.Comment: 5 pages, 2 figure

    Weight distributions of cyclic codes with respect to pairwise coprime order elements

    Full text link
    Let Fr\Bbb F_r be an extension of a finite field Fq\Bbb F_q with r=qmr=q^m. Let each gig_i be of order nin_i in Fr\Bbb F_r^* and gcd(ni,nj)=1\gcd(n_i, n_j)=1 for 1iju1\leq i \neq j \leq u. We define a cyclic code over Fq\Bbb F_q by C(q,m,n1,n2,...,nu)={c(a1,a2,...,au):a1,a2,...,auFr},\mathcal C_{(q, m, n_1,n_2, ..., n_u)}=\{c(a_1, a_2, ..., a_u) : a_1, a_2, ..., a_u \in \Bbb F_r\}, where c(a1,a2,...,au)=(Trr/q(i=1uaigi0),...,Trr/q(i=1uaigin1))c(a_1, a_2, ..., a_u)=({Tr}_{r/q}(\sum_{i=1}^ua_ig_i^0), ..., {Tr}_{r/q}(\sum_{i=1}^ua_ig_i^{n-1})) and n=n1n2...nun=n_1n_2... n_u. In this paper, we present a method to compute the weights of C(q,m,n1,n2,...,nu)\mathcal C_{(q, m, n_1,n_2, ..., n_u)}. Further, we determine the weight distributions of the cyclic codes C(q,m,n1,n2)\mathcal C_{(q, m, n_1,n_2)} and C(q,m,n1,n2,1)\mathcal C_{(q, m, n_1,n_2,1)}.Comment: 18 pages. arXiv admin note: substantial text overlap with arXiv:1306.527
    corecore