88 research outputs found

    Can Language Models perform Abductive Commonsense Reasoning?

    Full text link
    Abductive Reasoning is a task of inferring the most plausible hypothesis given a set of observations. In literature, the community has approached to solve this challenge by classifying/generating a likely hypothesis that does not contradict with a past observation and future observation. Some of the most well-known benchmarks that tackle this problem are aNLI and aNLG (pronounced as alpha-NLI and alpha-NLG). In this report, I review over some of the methodologies that were attempted to solve this challenge, re-implement the baseline models, and analyze some of the weaknesses that current approaches have. The code and the re-implemented results are available at this link.Comment: 6 page

    The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code

    Full text link
    Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking. Although large language models (LLMs) succeed in many NLP tasks, it is still challenging for them to conduct complex causal reasoning like abductive reasoning and counterfactual reasoning. Given the fact that programming code may express causal relations more often and explicitly with conditional statements like ``if``, we want to explore whether Code-LLMs acquire better causal reasoning abilities. Our experiments show that compared to text-only LLMs, Code-LLMs with code prompts are significantly better in causal reasoning. We further intervene on the prompts from different aspects, and discover that the programming structure is crucial in code prompt design, while Code-LLMs are robust towards format perturbations.Comment: Findings of ACL 2023. Code and data are available at https://github.com/xxxiaol/magic-i

    GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation

    Full text link
    Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository. Their adoption, however, is so far limited to tasks that can be reliably evaluated in an automatic manner. This work introduces GENIE, an extensible human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks. GENIE automatically posts leaderboard submissions to crowdsourcing platforms asking human annotators to evaluate them on various axes (e.g., correctness, conciseness, fluency) and compares their answers to various automatic metrics. We introduce several datasets in English to GENIE, representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension. We provide formal granular evaluation metrics and identify areas for future research. We make GENIE publicly available and hope that it will spur progress in language generation models as well as their automatic and manual evaluation

    Toward Unified Controllable Text Generation via Regular Expression Instruction

    Full text link
    Controllable text generation is a fundamental aspect of natural language generation, with numerous methods proposed for different constraint types. However, these approaches often require significant architectural or decoding modifications, making them challenging to apply to additional constraints or resolve different constraint combinations. To address this, our paper introduces Regular Expression Instruction (REI), which utilizes an instruction-based mechanism to fully exploit regular expressions' advantages to uniformly model diverse constraints. Specifically, our REI supports all popular fine-grained controllable generation constraints, i.e., lexical, positional, and length, as well as their complex combinations, via regular expression-style instructions. Our method only requires fine-tuning on medium-scale language models or few-shot, in-context learning on large language models, and requires no further adjustment when applied to various constraint combinations. Experiments demonstrate that our straightforward approach yields high success rates and adaptability to various constraints while maintaining competitiveness in automatic metrics and outperforming most previous baselines.Comment: Accepted on IJCNLP-AACL 202

    Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference

    Full text link
    The task of abductive natural language inference (\alpha{}nli), to decide which hypothesis is the more likely explanation for a set of observations, is a particularly difficult type of NLI. Instead of just determining a causal relationship, it requires common sense to also evaluate how reasonable an explanation is. All recent competitive systems build on top of contextualized representations and make use of transformer architectures for learning an NLI model. When somebody is faced with a particular NLI task, they need to select the best model that is available. This is a time-consuming and resource-intense endeavour. To solve this practical problem, we propose a simple method for predicting the performance without actually fine-tuning the model. We do this by testing how well the pre-trained models perform on the \alpha{}nli task when just comparing sentence embeddings with cosine similarity to what the performance that is achieved when training a classifier on top of these embeddings. We show that the accuracy of the cosine similarity approach correlates strongly with the accuracy of the classification approach with a Pearson correlation coefficient of 0.65. Since the similarity computation is orders of magnitude faster to compute on a given dataset (less than a minute vs. hours), our method can lead to significant time savings in the process of model selection.Comment: accepted at NAACL 202
    • …
    corecore