3,680 research outputs found

    Secure and Privacy-Preserving Average Consensus

    Full text link
    Average consensus is fundamental for distributed systems since it underpins key functionalities of such systems ranging from distributed information fusion, decision-making, to decentralized control. In order to reach an agreement, existing average consensus algorithms require each agent to exchange explicit state information with its neighbors. This leads to the disclosure of private state information, which is undesirable in cases where privacy is of concern. In this paper, we propose a novel approach that enables secure and privacy-preserving average consensus in a decentralized architecture in the absence of any trusted third-parties. By leveraging homomorphic cryptography, our approach can guarantee consensus to the exact value in a deterministic manner. The proposed approach is light-weight in computation and communication, and applicable to time-varying interaction topology cases. A hardware implementation is presented to demonstrate the capability of our approach.Comment: 7 pages, 4 figures, paper is accepted to CPS-SPC'1

    Optimal strategies in the average consensus problem

    Full text link
    We prove that for a set of communicating agents to compute the average of their initial positions (average consensus problem), the optimal topology of communication is given by a de Bruijn's graph. Consensus is then reached in a finitely many steps. A more general family of strategies, constructed by block Kronecker products, is investigated and compared to Cayley strategies.Comment: 9 pages; extended preprint with proofs of a CDC 2007 (Conference on decision and Control) pape

    Discontinuities and hysteresis in quantized average consensus

    Full text link
    We consider continuous-time average consensus dynamics in which the agents' states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasowskii sense and are proven to converge to conditions of "practical consensus". To cope with undesired chattering phenomena we introduce a hysteretic quantizer, and we study the convergence properties of the resulting dynamics by a hybrid system approach.Comment: 26 pages, 7 figures. Accepted for publication in Automatica. v4 is minor revision of v

    Distributed Change Detection via Average Consensus over Networks

    Full text link
    Distributed change-point detection has been a fundamental problem when performing real-time monitoring using sensor-networks. We propose a distributed detection algorithm, where each sensor only exchanges CUSUM statistic with their neighbors based on the average consensus scheme, and an alarm is raised when local consensus statistic exceeds a pre-specified global threshold. We provide theoretical performance bounds showing that the performance of the fully distributed scheme can match the centralized algorithms under some mild conditions. Numerical experiments demonstrate the good performance of the algorithm especially in detecting asynchronous changes.Comment: 15 pages, 8 figure

    Real-valued average consensus over noisy quantized channels

    Get PDF
    This paper concerns the average consensus problem with the constraint of quantized communication between nodes. A broad class of algorithms is analyzed, in which the transmission strategy, which decides what value to communicate to the neighbours, can include various kinds of rounding, probabilistic quantization, and bounded noise. The arbitrariness of the transmission strategy is compensated by a feedback mechanism which can be interpreted as a self-inhibitory action. The result is that the average of the nodes state is not conserved across iterations, and the nodes do not converge to a consensus; however, we show that both errors can be made as small as desired. Bounds on these quantities involve the spectral properties of the graph and can be proved by employing elementary techniques of LTI systems analysis
    • …
    corecore