520 research outputs found

    In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode.

    Get PDF
    Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light

    In the Lab : Towards a Molecular Level Understanding of Electrochemical Interfaces and Electrocatalytic Reactions

    Get PDF
    Non peer reviewedPublisher PD

    Potentiostatic infrared titration of 11-Mercaptoundecanoic acid monolayers

    Get PDF
    Acknowledgment This work was supported by the Spanish DGICYT under grant CTQ2008-00371 and by the Junta de Andalucía under grant P07-FQM-02492.Peer reviewedPostprin

    Electrooxidation of formic acid on gold : An ATR-SEIRAS study of the role of adsorbed formate

    Get PDF
    Funding from the DGI (Spanish Ministry of Education and Science) through Projects CTQ2009-07017 and PLE2009-0008 is gratefully acknowledged. M.E.-E. acknowledges an FPI fellowship from the Spanish Ministry of Science and Innovation and an accommodation grant at the Residencia de Estudiantes from the Madrid City Council. C. V.-D. acknowledges a JAE-Doc fellowship from CSIC.Peer reviewedPostprin

    Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum

    Get PDF
    This work was supported by Japanese Society for the Promotion of Science (JSPS) KAKENHI Grants Nos. 24550143 and 24750117 and MEXT Project of Integrated Research on Chemical Synthesis. M.T.M.K. gratefully acknowledges the award of Long-Term Fellowship of JSPS (No. L-11527) and Visiting Professorship of Hokkaido University. T.U. acknowledges Grants-in-Aid for Regional R&D Proposal-Based Program from Northern Advancement Center for Science & Technology of Hokkaido, Japan. J.J. acknowledges scholarship of Asian Graduate School, Hokkaido University.Peer reviewedPostprin

    In situ Fourier transform infrared reflection absortion spectroscopy study of adenine adsorption on gold electrodes in basic media

    Get PDF
    In situ Fourier transform infrared reflection absortion spectroscopy (FT-IRRAS) has been used in the external (SNIFTIRS method) and the internal (ATR-SEIRAS) reflection configurations to determine the pH influence, in the neutral and basic range, on the adsorption of adenine on Au(111) and gold nanofilm electrodes from D2O and H2O solutions. In D2O solutions, the main adsorbate band around 1640 cm−1,due to a ring stretching mode, shows different characteristics in the spectra collected at pH values at which the neutral and the basic adenine forms predominate in solution. The analysis of these differences, in comparison with the respective spectra of adenine in solution, permits us to conclude that both forms of adenine can adsorb chemically. The high sensitivity of the ATR-SEIRAS method has been used to analyze the contribution to the spectra of each form of adsorbed adenine as a function of the pH of the solution. The pKa2 obtained for the adsorbed species from this analysis is almost coincident with the pKa2 reported for adenine in solution, indicating that the coordination to the electrode and the second acid-base equilibrium involves different atoms of the adenine molecule. This result confirms the previously proposed adsorption model for adenine, implying the bonding of adenine to the electrode by the amine nitrogen (N10) and either the ring nitrogens N1 or N7, while the second acid-base equilibrium of adenine involves the ring nitrogen N9. Comparison of the 3400-3600 cm−1 region of the ATR-SEIRAS spectra of adenine obtained in H2O solutions at different pH values, which corresponds to the characteristic–OH stretching mode of the interfacial water molecules, permits us to discard the co-adsorption of water molecules in neutral and basic media, contrary to the case of adenine adsorption from acid media.Financial support from the Spanish Ministry of Science and Technology (CTQ2010-19823 and a FPU-grant to JAM), from the Junta de Andalucia (PAI FQM202) and University of Alicante

    ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4

    Get PDF
    Rh modified Au(111-25 nm) electrodes, prepared by electron beam evaporation and galvanostatic deposition, were employed to study adsorption and electro-oxidation of CO on Rh in 0.1 M sulfuric acid solution by in situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The results of ATR-SEIRAS experiments were compared with those obtained by infrared reflection absorption spectroscopy on three low-index Rh single crystal surfaces. The Rh film deposited on Au(111-25 nm) electrode consists of 3D clusters forming a highly stepped [n(111) × (111)]-like surface with narrow (111) terraces. When CO was dosed at the hydrogen adsorption potential region, CO adsorbed in both atop (COL) and bridge (COB) configurations, as well as coadsorbed water species, were detected on the Rh film electrode. A partial interconversion of spectroscopic bands due to the CO displacement from bridge to atop sites was found during the anodic potential scan, revealing that there is a potential-dependent preference of CO adsorption sites on Rh surfaces. Our data indicate that CO oxidation on Rh electrode surface in acidic media involves coadsorbed water and follows the nucleation and growth model of a Langmuir-Hinshelwood type reaction.The work was supported by the Research Center Jülich, the University of Bern, Swiss National Science Foundation (200020_144471, 200021-124643), the Spanish Ministerio de Economía y Competitividad (project CTQ2013-44083-P) and University of Alicante. QX acknowledges fellowships of the Research Center Jülich; IP acknowledges support by COST Action TD 1002; and AK acknowledges the financial support by CTI Swiss Competence Centers for Energy Research (SCCER Heat and Electricity Storage)

    Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane

    Get PDF
    Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the linear scaling relationship of the binding strength of key intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a one-pot tandem catalysis mechanism based on computational and electrochemical investigations. By constructing a well-defined copper-modified silver surface, adsorbed carbon monoxide generated on the silver sites is proposed to migrate to surface copper sites for the subsequent reduction to methane, which is consistent with insights gained from operando attenuated total reflectance surface enhanced infrared absorption spectroscopic investigations. Our results provide a promising approach for designing carbon dioxide electroreduction catalysts to enable one-pot reduction of products beyond carbon monoxide and formate

    An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates

    Full text link
    The CO_{2} electro-reduction reaction (CORR) is a promising avenue to convert greenhouse gases into high-value fuels and chemicals, in addition to being an attractive method for storing intermittent renewable energy. Although polycrystalline Cu surfaces have long known to be unique in their capabilities of catalyzing the conversion of CO_{2} to higher-order C1 and C2 fuels, such as hydrocarbons (CH_{4}, C_{2}H_{4} etc.) and alcohols (CH_{3}OH, C_{2}H_{5}OH), product selectivity remains a challenge. In this study, we select three metal catalysts (Pt, Au, Cu) and apply in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS), coupled to density-functional theory (DFT) calculations, to get insight into the reaction pathway for the CORR. We present a comprehensive reaction mechanism for the CORR, and show that the preferential reaction pathway can be rationalized in terms of metal-carbon (M-C) and metal-oxygen (M-O) affinity. We show that the final products are determined by the configuration of the initial intermediates, C-bound and O-bound, which can be obtained from CO_{2} and (H)CO_{3}, respectively. C1 hydrocarbons are produced via OCH_{3, ad} intermediates obtained from O-bound CO_{3, ad} and require a catalyst with relatively high affinity for O-bound intermediates. Additionally, C2 hydrocarbon formation is suggested to result from the C-C coupling between C-bound CO_{ad} and (H)CO_{ad}, which requires an optimal affinity for the C-bound species, so that (H)CO_{ad} can be further reduced without poisoning the catalyst surface. Our findings pave the way towards a design strategy for CORR catalysts with improved selectivity, based on this experimental/theoretical reaction mechanisms that have been identified
    corecore