169,263 research outputs found

    Isolation of oligomycin-sensitive adenosine triphosphatase from beef heart mitochondria and analysis of its fine structure

    Get PDF
    1. An oligomycin -sensitive ATPase was isolated and partially purified from beef heart mitochondria. The specific activity of ATPase sensitive to oligomycin of the fraction was five to eight times that of aged mitochondrial or of DNP-induced mitochondrial ATPase assayed under the same condition. 2. Electron micrographs of the partially purified oligomycin- sensitive ATPase reveal a structure in which headpieces are regularly attached by way of stalks to a thread-like structure derived from a superficial portion of base pieces. 3. A high concentration of the structured material coincided with a high activity of oligomycin-sensitive ATPase. When the headpieces were detached from the structure, the ATPase became insensitive to oligomycin. 4. The fraction of oligomycin -sensitive ATPase was essentially free of membrane structure and was contaminated with a small amount of cytochromes b and Cl but no cyt. a. Cytochrome concentrations of the preparations were indifferent to the activity of oligomycin sensitive ATPase. It follows that ATPase does not require cytochromes or membrane structure for its oligomycin sensitivity. 5. From these results it seems that the factor rendering ATPase sensitive to oligomycin should be contained in the stalks and/or the thread-like portion of basepieces of the structure. The structure is the simplest unit of oligomycinsensitive ATPase as yet obtained. 6. The structure was called &#34;oligomycin-sensitive ATPase particles&#34; (abbreviated as OSA particles). A unit of OSA particles consists of a headpiece attached by a stalk to a portion of base piece.</p

    Uncoupling of p97 ATPase activity has a dominant negative effect on protein extraction

    Get PDF
    p97 is a highly abundant, homohexameric AAA+ ATPase that performs a variety of essential cellular functions. Characterized as a ubiquitin-selective chaperone, p97 recognizes proteins conjugated to K48-linked polyubiquitin chains and promotes their removal from chromatin and other molecular complexes. Changes in p97 expression or activity are associated with the development of cancer and several related neurodegenerative disorders. Although pathogenic p97 mutations cluster in and around p97's ATPase domains, mutant proteins display normal or elevated ATPase activity. Here, we show that one of the most common p97 mutations (R155C) retains ATPase activity, but is functionally defective. p97-R155C can be recruited to ubiquitinated substrates on chromatin, but is unable to promote substrate removal. As a result, p97-R155C acts as a dominant negative, blocking protein extraction by a similar mechanism to that observed when p97's ATPase activity is inhibited or inactivated. However, unlike ATPase-deficient proteins, p97-R155C consumes excess ATP, which can hinder high-energy processes. Together, our results shed new insight into how pathogenic mutations in p97 alter its cellular function, with implications for understanding the etiology and treatment of p97-associated diseases

    Dysregulation of Na+/K+ ATPase by amyloid in APP+PS1 transgenic mice

    Get PDF
    BACKGROUND: The pathology of Alzheimer's disease (AD) is comprised of extracellular amyloid plaques, intracellular tau tangles, dystrophic neurites and neurodegeneration. The mechanisms by which these various pathological features arise are under intense investigation. Here, expanding upon pilot gene expression studies, we have further analyzed the relationship between Na+/K+ ATPase and amyloid using APP+PS1 transgenic mice, a model that develops amyloid plaques and memory deficits in the absence of tangle formation and neuronal or synaptic loss. RESULTS: We report that in addition to decreased mRNA expression, there was decreased overall Na+/K+ ATPase enzyme activity in the amyloid-containing hippocampi of the APP+PS1 mice (although not in the amyloid-free cerebellum). In addition, dual immunolabeling revealed an absence of Na+/K+ ATPase staining in a zone surrounding congophilic plaques that was occupied by dystrophic neurites. We also demonstrate that cerebral Na+/K+ ATPase activity can be directly inhibited by high concentrations of soluble Aβ. CONCLUSIONS: The data suggest that the reductions in Na+/K+ ATPase activity in Alzheimer tissue may not be purely secondary to neuronal loss, but may results from direct effects of amyloid on this enzyme. This disruption of ion homeostasis and osmotic balance may interfere with normal electrotonic properties of dendrites, blocking intraneuronal signal processing, and contribute to neuritic dystrophia. These results suggest that therapies aimed at enhancing Na+/K+ ATPase activity in AD may improve symptoms and/or delay disease progression

    Regulation of vacuolar H+-ATPase activity by the Cdc42 effector Ste20 in Saccharomyces cerevisiae

    Get PDF
    In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coimmunoprecipitation. We also demonstrate that Ste20 associates with vacuolar membranes and that Ste20 stimulates V-ATPase activity in isolated vacuolar membranes. This activation requires Ste20 kinase activity and does not depend on increased assembly of the V1 and V0 sectors of the V-ATPase, which is a major regulatory mechanism. Furthermore, loss of V-ATPase activity leads to a strong increase in invasive growth, possibly because these cells fail to store and mobilize nutrients efficiently in the vacuole in the absence of the vacuolar proton gradient. In contrast to the wild type, which grows in rather small, isolated colonies on solid medium during filamentation, hyperinvasive vma mutants form much bigger aggregates in which a large number of cells are tightly clustered together. Genetic data suggest that Ste20 and the protein kinase A catalytic subunit Tpk2 are both activated in the vma13Δ strain. We propose that during filamentous growth, Ste20 stimulates V-ATPase activity. This would sustain nutrient mobilization from vacuolar stores, which is beneficial for filamentous growth.The project was supported by Deutsche Forschungsgemeinschaft grant HO 2098/3 to T.H. and NIH grant R01 GM50322 to P.M.K

    LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate

    Get PDF
    Background Lrrk2, a gene linked to Parkinson\u2019s disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Results Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Conclusions Given that the most common Parkinson\u2019s disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF

    The Nuclease Activity of the Yeast Dna2 Protein, Which Is Related to the RecB-like Nucleases, Is Essential in Vivo

    Get PDF
    Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype

    Structure and function of the bacterial heterodimeric ABC transporter CydDC: stimulation of ATPase activity by thiol and heme compounds.

    Get PDF
    In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport

    Regulatory assembly of the vacuolar proton pump VOV1-ATPase in yeast cells by FLIM-FRET

    Full text link
    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for transport processes as well as for pH and Ca2+ homoeostasis in the cell. Activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.Comment: 8 pages, 3 figure

    In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization

    Get PDF
    The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2–7 onto DNA. Helicase loading involves two MCM2–7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2–7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC–Cdc6 interaction and MCM2–7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2–7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2–7. To determine whether Cdc6 regulates MCM2–7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2–7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2–7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2–7 recruitment, show that ATPase activity is required for MCM2–7 hexamer dimerization and demonstrate that MCM2–7 hexamers are recruited to origins in a consecutive process

    Abnormal regulation of Na,K-ATPase in Glucose Intolerant Rats.

    Get PDF
    Introduction: Glucose is the most important physiological insulin secretagogue. However, the mechanisms underlying glucose-induced insulin release are not fully understood. The role of electrogenic systems such as ionic pumps, to these events remains essentially uninvestigated. Na,K-ATPase, responsible for maintaining Na+ and K+ gradients across the plasma membrane and generates a net outward current, thus changes in its activity may contribute to the early ionic events regulating insulin secretion (Therien and Blostein, 2000). Objective: The aim of this work was to evaluate the regulation of Na,K-ATPase activity by glucose in intact -cells of normal and glucose intolerant (GI) rats and its putative contribution to the regulation of insulin secretion. Material and Methods: Pancreatic -cells, from normal or control or GI rats, were isolated and cultured (48h). Cell batches were pre-incubated (30min) with 2mM glucose to reach basal. Afterwards cells were challenged with glucose in the interval 0-11mM for 60min, for dose-dependence evaluation, or with 8mM glucose for 5-120min, for time-dependence evaluation. ATPase activity was assessed in intact cells by colorimetric quantification of Pi formed in 30min. Na,K-ATPase activity was calculated by the difference between the activities obtained in the absence and in presence the of 1mM ouabain (Costa et al., 2009). Results: In β-cells from normal rats, glucose induced a bimodal regulation of Na,K-ATPase. In the absence of glucose, Na,K-ATPase activity was 0.056±0.015 U/mg. Stimulation with 2mM glucose induced an increase of Na,K-ATPase activity of ~4 fold whereas for [glucose] above 2mM it was observed a significant inhibition of Na,K-ATPase activity (0.061±0.013, 0.080±0.009 and 0.064±0.005 U/mg for 5.6, 8.4 and 11mM glucose, respectively, compared to 0.188±0.035 U/mg observed in 2mM G; n=3-8). β-cells from GI rats does not present this profile; in the absence of glucose, Na,K-ATPase activity was 0.202±0.036 U/mg and no significant differences from this value were observed with the other glucose concentration tested. Addicionally, in β-cells from normal rats, glucose (8mM) induced a time-dependent inhibition, with a biphasic profile, of Na,K-ATPase - it was observed a decrease in the pump activity between 0 and 20min stimulation where it reached a minimum value (77%). For incubation periods over 20min, the pump activity slowly and partially recovered (54%, 55% and 52%, for 30, 60 and 120min, respectively; n=7). In β-cells from GI animals, an less accentuated decrease of Na,K-ATPase activity between 0 ans 20min was also observed (34%), and is not observed further recover in activity. Conclusions: This work demonstrates there Na,K-ATPase is strictly regulated by glucose in pancreatic β-cell. This regulation is unpaired in GI animals. Na,K-ATPase contribution to glucose-induced ionic events and insulin secretion might be relevant and must be explored as a possible therapeutic target in TD2 . 1. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541-C566 2. Costa AR, Real J, Antunes CM, Cruz-Morais J (2009) A new approach for determination of Na,K-ATPase activity: application to intact pancreatic beta-cells. In Vitro Cell Dev Biol Ani
    corecore