2,289,033 research outputs found
Hybrid Ventilation System and Soft-Sensors for Maintaining Indoor Air Quality and Thermal Comfort in Buildings
Maintaining both indoor air quality (IAQ) and thermal comfort in buildings along with optimized energy consumption is a challenging problem. This investigation presents a novel design for hybrid ventilation system enabled by predictive control and soft-sensors to achieve both IAQ and thermal comfort by combining predictive control with demand controlled ventilation (DCV). First, we show that the problem of maintaining IAQ, thermal comfort and optimal energy is a multi-objective optimization problem with competing objectives, and a predictive control approach is required to smartly control the system. This leads to many implementation challenges which are addressed by designing a hybrid ventilation scheme supported by predictive control and soft-sensors. The main idea of the hybrid ventilation system is to achieve thermal comfort by varying the ON/OFF times of the air conditioners to maintain the temperature within user-defined bands using a predictive control and IAQ is maintained using Healthbox 3.0, a DCV device. Furthermore, this study also designs soft-sensors by combining the Internet of Things (IoT)-based sensors with deep-learning tools. The hardware realization of the control and IoT prototype is also discussed. The proposed novel hybrid ventilation system and the soft-sensors are demonstrated in a real research laboratory, i.e., Center for Research in Automatic Control Engineering (C-RACE) located at Kalasalingam University, India. Our results show the perceived benefits of hybrid ventilation, predictive control, and soft-sensors
The upper atmosphere
Energy transfer, and heat sinks and sources in upper atmosphere for composition and temperature behavio
Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions
Triton possesses a thin atmosphere, primarily composed of nitrogen, sustained
by the sublimation of surface ices. The goal is to determine the composition of
Triton's atmosphere and to constrain the nature of surface-atmosphere
interactions. We perform high-resolution spectroscopic observations in the
2.32-2.37 m range, using CRIRES at the VLT. From this first spectroscopic
detection of Triton's atmosphere in the infrared, we report (i) the first
observation of gaseous methane since its discovery in the ultraviolet by
Voyager in 1989 and (ii) the first ever detection of gaseous CO in the
satellite. The CO atmospheric abundance is remarkably similar to its surface
abundance, and appears to be controlled by a thin, CO-enriched, surface veneer
resulting from seasonal transport and/or atmospheric escape. The CH partial
pressure is several times larger than inferred from Voyager. This confirms that
Triton's atmosphere is seasonally variable and is best interpreted by the
warming of CH-rich icy grains as Triton passed southern summer solstice in
2000. The presence of CO in Triton's atmosphere also affects its temperature,
photochemistry and ionospheric composition. An improved upper limit on CO in
Pluto's atmosphere is also reported.Comment: 11 pages, including 4 figures and 2 on-line figures Astronomy and
Astrophysics, in press (accepted March 13, 2010
Lunar atmosphere
Solar wind, meteoric volatilization, and internal degassing contributing to lunar rarefied atmosphere, and transient contributions produced by rocket gases during lunar mission
Exploring the atmosphere using smartphones
The characteristics of the inner layer of the atmosphere, the troposphere,
are determinant for the earth's life. In this experience we explore the first
hundreds of meters using a smartphone mounted on a quadcopter. Both the
altitude and the pressure are obtained using the smartphone's sensors. We
complement these measures with data collected from the flight information
system of an aircraft. The experimental results are compared with the
International Standard Atmosphere and other simple approximations: isothermal
and constant density atmospheres.Comment: 5 pages, 4 figure
The Atmospheric Chemistry of GJ 1214b: Photochemistry and Clouds
Recent observations of the transiting super-Earth GJ 1214b reveal that its
atmosphere may be hydrogen-rich or water-rich in nature, with clouds or hazes
potentially affecting its transmission spectrum in the optical and
very-near-IR. Here we further examine the possibility that GJ 1214b does indeed
possess a hydrogen-dominated atmosphere, which is the hypothesis that is
favored by models of the bulk composition of the planet. We study the effects
of non-equilibrium chemistry (photochemistry, thermal chemistry, and mixing) on
the planet's transmission spectrum. We furthermore examine the possibility that
clouds could play a significant role in attenuating GJ 1214b's transmission
spectrum at short wavelengths. We find that non-equilibrium chemistry can have
a large effect on the overall chemical composition of GJ 1214b's atmosphere,
however these changes mostly take place above the height in the atmosphere that
is probed by transmission spectroscopy. The effects of non-equilibrium
chemistry on GJ 1214b's transmission spectrum are therefore minimal, with the
largest effects taking place if the planet's atmosphere has super-solar
metallicity and a low rate of vertical mixing. Interestingly, we find that the
best fit to the observations of GJ 1214b's atmosphere in transmission occur if
the planet's atmosphere is deficient in CH4, and possesses a cloud layer at a
pressure of ~200 mbar. This is consistent with a picture of efficient methane
photolysis, accompanied by formation of organic haze that obscures the lower
atmosphere of GJ 1214b at optical wavelengths. However, for methane to be
absent from GJ 1214b's transmission spectrum, UV photolysis of this molecule
must be efficient at pressures of greater than ~1 mbar, whereas we find that
methane only photolyzes to pressures less than 0.1 mbar, even under the most
optimistic assumptions. (Abridged)Comment: Accepted to ApJ; 32 pages, 8 figures, 1 tabl
Numerical Sensitivity Tests of Volatile Organic Compounds Emission to PM2.5 Formation during Heat Wave Period in 2018 in Two Southeast Korean Cities
A record-breaking severe heat wave was recorded in southeast Korea from 11 July to 15 August 2018, and the numerical sensitivity simulations of volatile organic compound (VOC) to secondarily generated particulate matter with diameter of less than 2.5 mu m (PM2.5) concentrations were studied in the Busan and Ulsan metropolitan areas in southeast Korea. A weather research and forecasting (WRF) model coupled with chemistry (WRF-Chem) was employed, and we carried out VOC emission sensitivity simulations to investigate variations in PM2.5 concentrations during the heat wave period that occurred from 11 July to 15 August 2018. In our study, when anthropogenic VOC emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment-2015 (CREATE-2015) inventory were increased by approximately a factor of five in southeast Korea, a better agreement with observations of PM2.5 mass concentrations was simulated, implying an underestimation of anthropogenic VOC emissions over southeast Korea. The simulated secondary organic aerosol (SOA) fraction, in particular, showed greater dominance during high temperature periods such as 19-21 July, 2018, with the SOA fractions of 42.3% (in Busan) and 34.3% (in Ulsan) among a sub-total of seven inorganic and organic components. This is considerably higher than observed annual mean organic carbon (OC) fraction (28.4 +/- 4%) among seven components, indicating the enhancement of secondary organic aerosols induced by photochemical reactions during the heat wave period in both metropolitan areas. The PM2.5 to PM10 ratios were 0.69 and 0.74, on average, during the study period in the two cities. These were also significantly higher than the typical range in those cities, which was 0.5-0.6 in 2018. Our simulations implied that extremely high temperatures with no precipitation are significantly important to the secondary generation of PM2.5 with higher secondary organic aerosol fraction via photochemical reactions in southeastern Korean cities. Other possible relationships between anthropogenic VOC emissions and temperature during the heat wave episode are also discussed in this study
Telespectrograph Patent
Telespectrograph for analyzing upper atmosphere by tracking bodies reentering atmosphere at high velocitie
- …
