3 research outputs found

    ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging

    No full text
    Future spaceborne synthetic aperture radar (SAR) missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS) is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS mode named Alamouti Space-time Coding multiple-input multiple-output TOPS (ASTC-MIMO-TOPS) mode combined with digital beam-forming (DBF) in elevation and multi-aperture SAR signal reconstruction in azimuth is proposed. This innovative mode achieves wide-swath coverage with a high geometric resolution and also overcomes major drawbacks in conventional MIMO SAR systems. The data processing scheme of this imaging scheme is presented in detail. The designed system example of the proposed ASTC-MIMO-TOPS mode, which has the imaging capacity of a 400 km wide swath with an azimuth resolution of 3 m, is given. Its system performance analysis results and simulated imaging results on point targets demonstrate the potential of the proposed novel spaceborne SAR mode for high-resolution wide-swath (HRWS) imaging
    corecore