1,661 research outputs found

    Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice

    Get PDF
    Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a −/− knockout). Our results showed that 1) ASIC1a −/− female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.Fil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Lino, Noelia Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: González Inchauspe, Carlota María Fabiola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Gonzalez, Laura Elisabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Colettis, Natalia Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Vattino, Lucas Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Wunsch, Amanda M.. University of Iowa; Estados UnidosFil: Wemmie, John A.. University of Iowa; Estados UnidosFil: Uchitel, Osvaldo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium.

    Get PDF
    IntroductionAcid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).MethodsExperiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca(2+)](i), mitogen activated kinase (MAP kinase) expression, and cell death. [Ca(2+)](i) was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.ResultsAcidic pH increased [Ca(2+)](i) and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca(2+)]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca(2+)](i), p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca(2+)](i) and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.ConclusionsDecreased pH activates ASIC3 resulting in increased [Ca(2+)](i), and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca(2+)](i) and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage

    Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a

    Get PDF
    Acid-sensing ion channels are ligand-gated cation channels, gated by extracellular H+. H+ is the simplest ligand possible, and whereas for larger ligands that gate ion channels complex binding sites in the three-dimensional structure of the proteins have to be assumed, H+ could in principle gate a channel by titration of a single amino acid. Experimental evidence suggests a more complex situation, however. For example, it has been shown that extracellular Ca2+ ions compete with H+; probably Ca2+ ions bound to the extracellular loop of ASICs stabilize the closed state of the channel and have to be displaced before the channel can open. In such a scheme, amino acids contributing to Ca2+ binding would also be candidates contributing to H+ gating. In this study we systematically screened more than 40 conserved, charged amino acids in the extracellular region of ASIC1a for a possible contribution to H+ gating. We identified four amino acids where substitution strongly affects H+ gating: Glu63, His72/His73, and Asp78. These amino acids are highly conserved among H+-sensitive ASICs and are candidates for the “H+ sensor” of ASICs

    Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells.

    Get PDF
    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough

    The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19.

    Get PDF
    Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles

    Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons

    Get PDF
    Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons

    The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity

    Get PDF
    Acid-sensing ion channels (ASICs) are ion channels activated by extracellular protons. They are involved in higher brain functions and perception of pain, taste, and mechanical stimuli. Homomeric ASIC1a is potently inhibited by the tarantula toxin psalmotoxin 1. The mechanism of this inhibition is unknown. Here we show that psalmotoxin 1 inhibits ASIC1a by a unique mechanism: the toxin increases the apparent affinity for H+ of ASIC1a. Since ASIC1a is activated by H+ concentrations that are only slightly larger than the resting H+ concentration, this increase in H+ affinity is sufficient to shift ASIC1a channels into the desensitized state. As activation of ASIC1a has recently been linked to neurodegeneration associated with stroke, our results suggest chronic desensitization of ASIC1a by a slight increase of its H+ affinity as a possible way of therapeutic intervention in stroke

    Zebrafish acid-sensing ion channel (ASIC) 4, characterization of homo- and heteromeric channels, and identification of regions important for activation by H+

    Get PDF
    There are four genes for acid-sensing ion channels (ASICs) in the genome of mammalian species. Whereas ASIC1 to ASIC3 form functional H+-gated Na+ channels, ASIC4 is not gated by H+, and its function is unknown. Zebrafish has two ASIC4 paralogs: zASIC4.1 and zASIC4.2. Whereas zASIC4.1 is gated by extracellular H+, zASIC4.2 is not. This differential response to H+ makes zASIC4 paralogs a good model to study the properties of this ion channel. In this study, we found that surface expression of homomeric zASIC4.2 is higher than that of zASIC4.1. Surface expression of zASIC4.1 was much increased by formation of heteromeric channels, suggesting that zASIC4.1 contributes to heteromeric ASICs in zebrafish neurons. Robust surface expression of H+-insensitive zASIC4.2 suggests that zASIC4.2 functions as a homomer and is gated by an as yet unknown stimulus, different from H+. Moreover, we identified a small region just distal to the first transmembrane domain that is crucial for the differential H+ response of the two paralogs. This post-TM1 domain may have a general role in gating of members of this gene family
    corecore