3 research outputs found

    Cyber Forensics on Internet of Things: Slicing and Dicing Raspberry Pi

    Get PDF
    Any device can now connect to the Internet, and Raspberry Pi is one of the more popular applications, enabling single-board computers to make robotics, devices, and appliances part of the Internet of Things (IoT). The low cost and customizability of Raspberry Pi makes it easily adopted and widespread. Unfortunately, the unprotected Raspberry Pi device—when connected to the Internet—also paves the way for cyber-attacks. Our ability to investigate, collect, and validate digital forensic evidence with confidence using Raspberry Pi has become important. This article discusses and presents techniques and methodologies for the investigation of timestamp variations between different Raspberry Pi ext4 filesystems (Raspbian vs. UbuntuMATE), comparing forensic evidence with that of other ext4 filesystems (i.e., Ubuntu), based on interactions within a private cloud, as well as a public cloud. Sixteen observational principles of file operations were documented to assist in our understanding of Raspberry Pi’s behavior in the cloud environments. This study contributes to IoT forensics for law enforcement in cybercrime investigations

    API-Based Forensic Acquisition of Cloud Drives

    No full text
    Part 4: CLOUD FORENSICSInternational audienceCloud computing and cloud storage services, in particular, pose new challenges to digital forensic investigations. Currently, evidence acquisition for these services follows the traditional method of collecting artifacts residing on client devices. This approach requires labor-intensive reverse engineering effort and ultimately results in an acquisition that is inherently incomplete. Specifically, it makes the incorrect assumption that all the storage content associated with an account is fully replicated on the client. Additionally, there is no current method for acquiring historical data in the form of document revisions, nor is there a way to acquire cloud-native artifacts from targets such as Google Docs.This chapter introduces the concept of API-based evidence acquisition for cloud services, which addresses the limitations of traditional acquisition techniques by utilizing the officially-supported APIs of the services. To demonstrate the utility of this approach, a proof-of-concept acquisition tool, kumodd, is presented. The kumodd tool can acquire evidence from four major cloud drive providers: Google Drive, Microsoft OneDrive, Dropbox and Box. The implementation provides command-line and web user interfaces, and can be readily incorporated in established forensic processes
    corecore