251,552 research outputs found

    APC Communiqué

    Full text link
    This is the archive of the fall 2012 APC communiqué, a bi-annual newsletter, which has a special report on Ambassador Zhong Jianhua's visit entitled "China’s Africa Envoy discusses China-Africa relations

    Solidification of APC residues using PFA

    No full text
    A pulverised fuel ash (pfa) classed as a waste due to high loss on ignition (LoI) was blended with waste alkali and used to solidify air pollution control (APC) residue from a waste incinerator. The resultant samples were tested for compressive strength and characterised using thermogravimmetric analysis (TGA). The effects of various variables including; l/s ratio, APC content, curing temperature and alkalinity of the liquid phase were examined. Results showed that a lower l/s gave higher compressive strength, analogous to that seen for cement mixes. Curing at slightly elevated temperatures were necessary for setting of the mixes within 7 days. An alkaline liquid fraction increased early age strength. The %(w/w) APC content showed no clear correlation with compressive strength results, but some APC was necessary for the mix to set. Resulys suggest the optimum APC content for compressive strength and solidification may be between 10-20%

    Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis

    Get PDF
    Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene initiate a majority of colorectal cancers. Acquisition of chromosomal instability is an early event in these tumors. We provide evidence that the loss of APC leads to a partial loss of interkinetochore tension at metaphase and alters mitotic progression. Furthermore, we show that inhibition of APC in U2OS cells compromises the mitotic spindle checkpoint. This is accompanied by a decrease in the association of the checkpoint proteins Bub1 and BubR1 with kinetochores. Additionally, APC depletion reduced apoptosis. As expected from this combination of defects, tetraploidy and polyploidy are consequences of APC inhibition in vitro and in vivo. The removal of APC produced the same defects in HCT116 cells that have constitutively active β-catenin. These data show that the loss of APC immediately induces chromosomal instability as a result of a combination of mitotic and apoptotic defects. We suggest that these defects amplify each other to increase the incidence of tetra- and polyploidy in early stages of tumorigenesis

    APC-β-catenin-TCF signaling silences the intestinal guanylin-GUCY2C tumor suppressor axis.

    Get PDF
    Sporadic colorectal cancer initiates with mutations in APC or its degradation target β-catenin, producing TCF-dependent nuclear transcription driving tumorigenesis. The intestinal epithelial receptor, GUCY2C, with its canonical paracrine hormone guanylin, regulates homeostatic signaling along the crypt-surface axis opposing tumorigenesis. Here, we reveal that expression of the guanylin hormone, but not the GUCY2C receptor, is lost at the earliest stages of transformation in APC-dependent tumors in humans and mice. Hormone loss, which silences GUCY2C signaling, reflects transcriptional repression mediated by mutant APC-β-catenin-TCF programs in the nucleus. These studies support a pathophysiological model of intestinal tumorigenesis in which mutant APC-β-catenin-TCF transcriptional regulation eliminates guanylin expression at tumor initiation, silencing GUCY2C signaling which, in turn, dysregulates intestinal homeostatic mechanisms contributing to tumor progression. They expand the mechanistic paradigm for colorectal cancer from a disease of irreversible mutations in APC and β-catenin to one of guanylin hormone loss whose replacement, and reconstitution of GUCY2C signaling, could prevent tumorigenesis

    Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome

    Get PDF
    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2; 3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate

    Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury.

    Get PDF
    Activated protein C (APC) has emerged as a novel therapeutic agent for use in selected patients with severe sepsis, even though the mechanism of its benefit is not well established. APC has anticoagulant, anti-inflammatory, antiapoptotic, and profibrinolytic properties, but it is not clear through which of these mechanisms APC exerts its benefit in severe sepsis. Focus has recently turned to the role of APC in maintaining endothelial barrier function, and in vitro and in vivo studies have examined this relationship. This article critically reviews these studies, with a focus on potential mechanisms of action

    Mechanisms of Volatile Anesthetic-Induced Myocardial Protection

    Get PDF
    Volatile anesthetics protect myocardium against reversible and irreversible ischemic injury. Experimental evidence from several in vitro and in vivo animal models demonstrates that volatile agents enhance the recovery of stunned myocardium and reduce the size of myocardial infarction after brief or prolonged coronary artery occlusion and reperfusion, respectively. This protective effect persists after the anesthetic has been discontinued, a phenomenon known as anesthetic-induced preconditioning (APC). Recent clinical data also demonstrates evidence of APC in patients during cardiac surgery. Thus, administration of volatile anesthetics may represent a novel therapeutic approach that reduces morbidity and mortality associated with perioperative myocardial ischemia and infarction. The mechanisms responsible for APC appear to be similar to those implicated in ischemic preconditioning, but nonetheless have subtle differences. Accumulating evidence indicates that APC is characterized by complex signal transduction pathways that may include adenosine receptors, G proteins, protein kinase C, reactive oxygen species, and sarcolemmal or mitochondrial KATP channels. Opioid analgesics may further enhance APC as well. This article will review recent advances in the understanding of mechanisms responsible for volatile anesthetic-induced myocardial protection

    PAR1 Agonists Stimulate APC-Like Endothelial Cytoprotection and Confer Resistance to Thromboinflammatory Injury

    Get PDF
    Stimulation of protease-activated receptor 1 (PAR1) on endothelium by activated protein C (APC) is protective in several animal models of disease, and APC has been used clinically in severe sepsis and wound healing. Clinical use of APC, however, is limited by its immunogenicity and its anticoagulant activity. We show that a class of small molecules termed “parmodulins” that act at the cytosolic face of PAR1 stimulates APC-like cytoprotective signaling in endothelium. Parmodulins block thrombin generation in response to inflammatory mediators and inhibit platelet accumulation on endothelium cultured under flow. Evaluation of the antithrombotic mechanism showed that parmodulins induce cytoprotective signaling through Gβγ, activating a PI3K/Akt pathway and eliciting a genetic program that includes suppression of NF-κB–mediated transcriptional activation and up-regulation of select cytoprotective transcripts. STC1 is among the up-regulated transcripts, and knockdown of stanniocalin-1 blocks the protective effects of both parmodulins and APC. Induction of this signaling pathway in vivo protects against thromboinflammatory injury in blood vessels. Small-molecule activation of endothelial cytoprotection through PAR1 represents an approach for treatment of thromboinflammatory disease and provides proof-of-principle for the strategy of targeting the cytoplasmic surface of GPCRs to achieve pathway selective signaling
    corecore