4 research outputs found

    Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval

    Get PDF

    Revisiting Complex Moments For 2D Shape Representation and Image Normalization

    Full text link
    When comparing 2D shapes, a key issue is their normalization. Translation and scale are easily taken care of by removing the mean and normalizing the energy. However, defining and computing the orientation of a 2D shape is not so simple. In fact, although for elongated shapes the principal axis can be used to define one of two possible orientations, there is no such tool for general shapes. As we show in the paper, previous approaches fail to compute the orientation of even noiseless observations of simple shapes. We address this problem. In the paper, we show how to uniquely define the orientation of an arbitrary 2D shape, in terms of what we call its Principal Moments. We show that a small subset of these moments suffice to represent the underlying 2D shape and propose a new method to efficiently compute the shape orientation: Principal Moment Analysis. Finally, we discuss how this method can further be applied to normalize grey-level images. Besides the theoretical proof of correctness, we describe experiments demonstrating robustness to noise and illustrating the method with real images.Comment: 69 pages, 20 figure

    Symmetry Regularization

    Get PDF
    The properties of a representation, such as smoothness, adaptability, generality, equivari- ance/invariance, depend on restrictions imposed during learning. In this paper, we propose using data symmetries, in the sense of equivalences under transformations, as a means for learning symmetry- adapted representations, i.e., representations that are equivariant to transformations in the original space. We provide a sufficient condition to enforce the representation, for example the weights of a neural network layer or the atoms of a dictionary, to have a group structure and specifically the group structure in an unlabeled training set. By reducing the analysis of generic group symmetries to per- mutation symmetries, we devise an analytic expression for a regularization scheme and a permutation invariant metric on the representation space. Our work provides a proof of concept on why and how to learn equivariant representations, without explicit knowledge of the underlying symmetries in the data.This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216
    corecore