3,955,114 research outputs found
Mucky Ann
Mucky Ann is about a spate of graffiti I encountered in Sheffield. The essay and some photographs appear in The Eccentric City, a publication conceived and edited by Harry Palmer and Si Walker
Intelligent optical performance monitor using multi-task learning based artificial neural network
An intelligent optical performance monitor using multi-task learning based
artificial neural network (MTL-ANN) is designed for simultaneous OSNR
monitoring and modulation format identification (MFI). Signals' amplitude
histograms (AHs) after constant module algorithm are selected as the input
features for MTL-ANN. The experimental results of 20-Gbaud NRZ-OOK, PAM4 and
PAM8 signals demonstrate that MTL-ANN could achieve OSNR monitoring and MFI
simultaneously with higher accuracy and stability compared with single-task
learning based ANNs (STL-ANNs). The results show an MFI accuracy of 100% and
OSNR monitoring root-mean-square error of 0.63 dB for the three modulation
formats under consideration. Furthermore, the number of neuron needed for the
single MTL-ANN is almost the half of STL-ANN, which enables reduced-complexity
optical performance monitoring devices for real-time performance monitoring
An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis
The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice
Power scalable implementation of artificial neural networks
As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques
- …
