370,858 research outputs found

    Distribution anisotropy: the influence of magnetic interactions on the anisotropy of magnetic remanence

    No full text
    The anisotropy of magnetic remanence (AMR) is often used as a tool for examining magnetic anisotropy of rocks. However, the influence of magnetostatic interactions on AMR has not been previously rigorously addressed either theoretically or experimentally, though it is widely thought to be highly significant. Using a three-dimensional micromagnetic algorithm, we have conducted a systematic numerical study of the role of magnetostatic interactions on AMR. We have considered both lineation and foliation, by modelling assemblages of ideal single domain grains and magnetically non-uniform magnetite-like cubic grains. We show that magnetostatic interactions strongly affect the measured AMR signal. It is found that depending on the orientation of the single-grain anisotropy and grain spacing it is possible for the AMR signal from a chain or grid of grains to be either oblate or prolate. For non-uniform grains, the degree of anisotropy generally increases with increasing interactions. In the modelling of AMR anisotropy, saturation isothermal remanence was chosen for numerical tractability. The influence of interactions on other types of more commonly measured AMR, are considered in light of the results in this paper. © The Geological Society of London 2004.Accepted versio

    Not All Antibodies Are Created Equal: Factors That Influence Antibody Mediated Rejection.

    Get PDF
    Consistent with Dr. Paul Terasaki's "humoral theory of rejection" numerous studies have shown that HLA antibodies can cause acute and chronic antibody mediated rejection (AMR) and decreased graft survival. New evidence also supports a role for antibodies to non-HLA antigens in AMR and allograft injury. Despite the remarkable efforts by leaders in the field who pioneered single antigen bead technology for detection of donor specific antibodies, a considerable amount of work is still needed to better define the antibody attributes that are associated with AMR pathology. This review highlights what is currently known about the clinical context of pre and posttransplant antibodies, antibody characteristics that influence AMR, and the paths after donor specific antibody production (no rejection, subclinical rejection, and clinical dysfunction with AMR)

    Automatic Accuracy Prediction for AMR Parsing

    Full text link
    Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective.Comment: accepted at *SEM 201

    Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting.

    Get PDF
    The goal of the Sexually Transmitted Infection Clinical Trial Group's Antimicrobial Resistance (AMR) in Neisseria gonorrhoeae (NG) meeting was to assemble experts from academia, government, nonprofit and industry to discuss the current state of research, gaps and challenges in research and technology and priorities and new directions to address the continued emergence of multidrug-resistant NG infections. Topics discussed at the meeting, which will be the focus of this article, include AMR NG global surveillance initiatives, the use of whole genome sequencing and bioinformatics to understand mutations associated with AMR, mechanisms of AMR, and novel antibiotics, vaccines and other methods to treat AMR NG. Key points highlighted during the meeting include: (i) US and International surveillance programs to understand AMR in NG; (ii) the US National Strategy for combating antimicrobial-resistant bacteria; (iii) surveillance needs, challenges, and novel technologies; (iv) plasmid-mediated and chromosomally mediated mechanisms of AMR in NG; (v) novel therapeutic (eg, sialic acid analogs, factor H [FH]/Fc fusion molecule, monoclonal antibodies, topoisomerase inhibitors, fluoroketolides, LpxC inhibitors) and preventative (eg, peptide mimic) strategies to combat infection. The way forward will require renewed political will, new funding initiatives, and collaborations across academic and commercial research and public health programs
    corecore