323 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Performance Analysis of Denial-of-Sleep Attack-Prone MAC Protocols in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. On the other hand, the presence as well as the absence of security features implemented in resource constrained sensors can have negative effects on their energy consumption. Indeed, the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection could give room for energy-drain attacks such as denial-of-sleep attacks which has a higher negative impact on the life span (availability) of the sensors than the presence of security techniques. This paper focuses on denial-of-sleep attacks by simulating three Media Access Control (MAC) protocols – Sensor-MAC, Timeout-MAC and TunableMAC – under different network sizes. We evaluate, compare, and analyse the received signal strength and the link quality indicators for each of these protocols. The results of our simulation provide insight into how these parameters can be used to detect a denial-of-sleep attack. Finally, we propose a novel architecture for tackling denial-of-sleep attacks by propagating relevant knowledge via intelligent agents

    Proactive Energy-Efficiency: Evaluation of Duty-Cycled MAC Protocols in Wireless Sensor Networks

    Get PDF
    Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty-cycled protocols – Sensor-MAC (SMAC), Timeout-MAC (TMAC) and TunableMAC. Although other duty-cycled protocols are reviewed, the aforementioned three protocols are observed in OMNET++ simulator via the Castalia framework. Graphical results are produced which show the energy consumption and throughput as the duty cycle is varied and the variations in results for each of the three protocols are analyzed. The results provide insight into how to ensure ‘proactive energy-efficiency’ whereby the impact of denial-of-sleep attacks can be minimized while throughput is maximized

    Performance and Energy-Tuning Methodology for Wireless Sensor Networks Using TunableMAC

    Get PDF
    Energy-efficiency and performance are at the forefront with regards to wireless sensor networks due to the resource-constrained nature of the sensors on the network. Most of the energy in a sensor is consumed by the radio and this therefore creates the need for a more efficient use of the Media Access Control (MAC) layer which controls access to the radio. The Castalia framework which runs on the OMNET++ simulation platform provides a MAC layer protocol – TunableMAC – which is used in this paper for tuning of performance and consumed power. Our goal is to improve as much as possible the performance/energy balance in terms of resources used up by security features, while attempting to preserve the overall lifespan of the wireless sensors. This paper investigates performance parameters for TunableMAC such as energy consumed, latency, throughput and network lifetime based on simulated temperature sensors. A 5-step methodology is proposed that can be helpful for minimizing the impact of denial-of-sleep (DOS) attacks. Hence, the benefit of this research is that it feeds into the development of a novel MAC protocol that is energy-aware and can autonomously guard against energy drain attacks such as DOS attacks

    Layered-MAC: An Energy-Protected and Efficient Protocol for Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, the radio of the wireless sensor node happens to be the highest source of energy consumption. Hence, there is a need to focus on the MAC layer, as it controls access to the radio. While there are several existing techniques to make sensors more energy-efficient, not many of them consider the security aspects of energy efficiency. By this we mean, protecting energy from external attacks. The existing protocols focus mainly on either duty-cycling (Sensor-MAC, Time-out MAC) or clustering (Gateway MAC), as a way of conserving energy. One of such attacks to energy is the denial-of-sleep (DoSL) attack which is a specific kind of denial-of-service attacks designed to drain the energy of battery-powered sensors in a Wireless Sensor Network. This paper explains the development of a new MAC-layer protocol called Layered-MAC aimed at not just energy efficiency but energy protection against DoSL attacks. The protocol is implemented on the OMNET++ and Castalia simulator. The results from the simulation are then compared with two representative existing duty-cycled protocols (Time-out MAC and Sensor-MAC) and significant improvements are present. One of the benefits of the developed protocol is that, not only does it attempt to save energy, but it protects energy from DoSL attacks. There are two main contributions from this research – the first is the additional layer of network metrics (RSSI and LQI) consideration, based on the premise that protection/security is not possible without some form of measurement of assets, and the cluster head rotation which adds an extra layer of energy protection while considering energy efficiency
    • …
    corecore