31,864 research outputs found

    Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution

    Full text link
    It has been generally accepted that there are significant quadrupolar and bulk contributions to the second harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena. Namely, the broken of the macroscopic Kleinman symmetry, and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of broken of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well

    Oxidation of Monolayers of Partly Converted Dimethoxy-Substituted Poly(p-phenylenevinylene) Precursor Polymers at the Air-Water Interface

    Get PDF
    We observed that the poly(p-phenylenevinylene) units in Langmuir monolayers of partly converted dimethoxy-substituted poly(p-phenylenevinylene) precursor polymers oxidize at the air-water interface. This reaction even happened in the dark and therefore can not be attributed to a photooxygenation reaction with singlet oxygen. We assume that ground-state triplet oxygen is polarized at the air-water interface and forms a weakly bound complex with the double bond to give a reactive intermediate state, which lowers the activation energy of the oxidation reaction. The air-water interface thus works as a catalyst in this reaction.

    Effect of impurities in the description of surface nanobubbles: Role of nonidealities in the surface layer\ud

    Get PDF
    In a recent study [ S. Das, J. H. Snoeijer and D. Lohse Phys. Rev. E 82 056310 (2010)], we provided quantitative demonstration of the conjecture [ W. A. Ducker Langmuir 25 8907 (2009)] that the presence of impurities at the surface layer (or the air-water interface) of surface nanobubbles can substantially lower the gas-side contact angle and the Laplace pressure of the nanobubbles. Through an analytical model for any general air-water interface without nonideality effects, we showed that a large concentration of soluble impurities at the air-water interface of the nanobubbles ensures significantly small contact angles (matching well with the experimental results) and Laplace pressure (though large enough to forbid stability). In this paper this general model is extended to incorporate the effect of nonidealities at the air-water interface in impurity-induced alteration of surface nanobubble properties. Such nonideality effects arise from finite enthalpy or entropy of mixing or finite ionic interactions of the impurity molecules at the nanobubble air-water interface and ensure significant lowering of the nanobubble contact angle and Laplace pressure even at relatively small impurity coverage. In fact for impurity molecules that show enhanced tendency to get adsorbed at the nanobubble air-water interface from the bulk phase, impurity-induced lowering of the nanobubble contact angle is witnessed for extremely small bulk concentration. Surface nanobubble experiments being typically performed in an ultraclean environment, the bulk concentration of impurities is inevitably very small, and in this light the present calculations can be viewed as a satisfactory explanation of the conjecture that impurities, even in trace concentration, have significant impact on surface nanobubble

    Proton Availability at the Air/Water Interface

    Get PDF
    The acidity of the water surface sensed by a colliding gas is determined in experiments in which the protonation of gaseous trimethylamine (TMA) on aqueous microjets is monitored by online electrospray mass spectrometry as a function of the pH of the bulk liquid (pH_(BLK)). TMAH^+ signal intensities describe a titration curve whose equivalence point at pH_(BLK) 3.8 is dramatically smaller than the acidity constant of trimethylammonium in bulk solution, pK_A(TMAH^+) = 9.8. Notably, the degree of TMA protonation above pH_(BLK) 4 is enhanced hundred-fold by submillimolar LiCl or NaCl and weakly inhibited at larger concentrations. Protonation enhancements are associated with the onset of significant direct kinetic solvent hydrogen isotope effects. Since TMA(g) can be protonated by H_2O itself only upon extensive solvent participation, we infer that H3O^+ emerges at the surface of neat water below pH_(BLK) 4

    Adsorption of MultiLamellar tubes with a temperature tunable diameter at the air-water interface: a process driven by the bulk properties

    Get PDF
    The behavior at the air/water interface of multilamellar tubes made of the ethanolamine salt of the 12-hydroxy stearic acid as a function of the temperature has been investigated using Neutron Reflectivity. Those tubes are known to exhibit a temperature tunable diameter in the bulk. We have observed multilamellar tubes adsorbed at the air/water interface by specular neutron reflectivity. Interestingly, at the interface, the adsorbed tubes exhibit the same behavior than in the bulk upon heating. There is however a peculiar behavior at around 50\degree for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decrease after what they melt as observed in the bulk. All structural transitions at the interface are nevertheless shown to be quasi-completely reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature

    Hydrodynamics of Monolayer Domains at the Air-Water Interface

    Full text link
    Molecules at the air-water interface often form inhomogeneous layers in which domains of different densities are separated by sharp interfaces. Complex interfacial pattern formation may occur through the competition of short- and long-range forces acting within the monolayer. The overdamped hydrodynamics of such interfacial motion is treated here in a general manner that accounts for dissipation both within the monolayer and in the subfluid. Previous results on the linear stability of interfaces are recovered and extended, and a formulation applicable to the nonlinear regime is developed. A simplified dynamical law valid when dissipation in the monolayer itself is negligible is also proposed. Throughout the analysis, special attention is paid to the dependence of the dynamical behavior on a characteristic length scale set by the ratio of the viscosities in the monolayer and in the subphase.Comment: 12 pages, RevTeX, 4 ps figures, accepted in Physics of Fluids

    Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface

    Full text link
    Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.Comment: 8 pages, 9 figure

    Spontaneous patterning of quantum dots at the air-water interface

    Get PDF
    Nanoparticles deposited at the air-water interface are observed to form circular domains at low density and stripes at higher density. We interpret these patterns as equilibrium phenomena produced by a competition between an attraction and a longer-ranged repulsion. Computer simulations of a generic pair potential with attractive and repulsive parts of this kind, reproduce both the circular and stripe patterns. Such patterns have a potential use in nanoelectronic applications

    On Second-Order Vibrational Lineshapes of the Air/Water Interface

    Full text link
    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modify the imaginary chi(2)total responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(chi(2)) and chi(3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the chi(2)total spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial chi(2) and bulk chi(3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 wavenumber to 3300 wavenumber frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 wavenumber frequency range.Comment: Pre-edited version, 21 pages, 3 figures, supporting information available upon reques
    corecore