693,948 research outputs found

    Global Solutions vs. Local Solutions for the AI Safety Problem

    Get PDF
    There are two types of artificial general intelligence (AGI) safety solutions: global and local. Most previously suggested solutions are local: they explain how to align or “box” a specific AI (Artificial Intelligence), but do not explain how to prevent the creation of dangerous AI in other places. Global solutions are those that ensure any AI on Earth is not dangerous. The number of suggested global solutions is much smaller than the number of proposed local solutions. Global solutions can be divided into four groups: 1. No AI: AGI technology is banned or its use is otherwise prevented; 2. One AI: the first superintelligent AI is used to prevent the creation of any others; 3. Net of AIs as AI police: a balance is created between many AIs, so they evolve as a net and can prevent any rogue AI from taking over the world; 4. Humans inside AI: humans are augmented or part of AI. We explore many ideas, both old and new, regarding global solutions for AI safety. They include changing the number of AI teams, different forms of “AI Nanny” (non-self-improving global control AI system able to prevent creation of dangerous AIs), selling AI safety solutions, and sending messages to future AI. Not every local solution scales to a global solution or does it ethically and safely. The choice of the best local solution should include understanding of the ways in which it will be scaled up. Human-AI teams or a superintelligent AI Service as suggested by Drexler may be examples of such ethically scalable local solutions, but the final choice depends on some unknown variables such as the speed of AI progres

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Unpredictability of AI

    Get PDF
    The young field of AI Safety is still in the process of identifying its challenges and limitations. In this paper, we formally describe one such impossibility result, namely Unpredictability of AI. We prove that it is impossible to precisely and consistently predict what specific actions a smarter-than-human intelligent system will take to achieve its objectives, even if we know terminal goals of the system. In conclusion, impact of Unpredictability on AI Safety is discussed

    Integrative Biological Simulation, Neuropsychology, and AI Safety

    Full text link
    We describe a biologically-inspired research agenda with parallel tracks aimed at AI and AI safety. The bottom-up component consists of building a sequence of biophysically realistic simulations of simple organisms such as the nematode CaenorhabditisCaenorhabditis eleganselegans, the fruit fly DrosophilaDrosophila melanogastermelanogaster, and the zebrafish DanioDanio reriorerio to serve as platforms for research into AI algorithms and system architectures. The top-down component consists of an approach to value alignment that grounds AI goal structures in neuropsychology, broadly considered. Our belief is that parallel pursuit of these tracks will inform the development of value-aligned AI systems that have been inspired by embodied organisms with sensorimotor integration. An important set of side benefits is that the research trajectories we describe here are grounded in long-standing intellectual traditions within existing research communities and funding structures. In addition, these research programs overlap with significant contemporary themes in the biological and psychological sciences such as data/model integration and reproducibility.Comment: 5 page

    Philosophy and theory of artificial intelligence 2017

    Get PDF
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI safety; and cutting-edge developments in techniques to achieve AI, including machine learning, neural networks, dynamical systems. The book also discusses important applications of AI, including big data analytics, expert systems, cognitive architectures, and robotics. It offers a timely, yet very comprehensive snapshot of what is going on in the field of AI, especially at the interfaces between philosophy, cognitive science, ethics and computing
    corecore