693,948 research outputs found
Global Solutions vs. Local Solutions for the AI Safety Problem
There are two types of artificial general intelligence (AGI) safety solutions: global and local. Most previously suggested solutions are local: they explain how to align or “box” a specific AI (Artificial Intelligence), but do not explain how to prevent the creation of dangerous AI in other places. Global solutions are those that ensure any AI on Earth is not dangerous. The number of suggested global solutions is much smaller than the number of proposed local solutions. Global solutions can be divided into four groups: 1. No AI: AGI technology is banned or its use is otherwise prevented; 2. One AI: the first superintelligent AI is used to prevent the creation of any others; 3. Net of AIs as AI police: a balance is created between many AIs, so they evolve as a net and can prevent any rogue AI from taking over the world; 4. Humans inside AI: humans are augmented or part of AI. We explore many ideas, both old and new, regarding global solutions for AI safety. They include changing the number of AI teams, different forms of “AI Nanny” (non-self-improving global control AI system able to prevent creation of dangerous AIs), selling AI safety solutions, and sending messages to future AI. Not every local solution scales to a global solution or does it ethically and safely. The choice of the best local solution should include understanding of the ways in which it will be scaled up. Human-AI teams or a superintelligent AI Service as suggested by Drexler may be examples of such ethically scalable local solutions, but the final choice depends on some unknown variables such as the speed of AI progres
Robust Computer Algebra, Theorem Proving, and Oracle AI
In the context of superintelligent AI systems, the term "oracle" has two
meanings. One refers to modular systems queried for domain-specific tasks.
Another usage, referring to a class of systems which may be useful for
addressing the value alignment and AI control problems, is a superintelligent
AI system that only answers questions. The aim of this manuscript is to survey
contemporary research problems related to oracles which align with long-term
research goals of AI safety. We examine existing question answering systems and
argue that their high degree of architectural heterogeneity makes them poor
candidates for rigorous analysis as oracles. On the other hand, we identify
computer algebra systems (CASs) as being primitive examples of domain-specific
oracles for mathematics and argue that efforts to integrate computer algebra
systems with theorem provers, systems which have largely been developed
independent of one another, provide a concrete set of problems related to the
notion of provable safety that has emerged in the AI safety community. We
review approaches to interfacing CASs with theorem provers, describe
well-defined architectural deficiencies that have been identified with CASs,
and suggest possible lines of research and practical software projects for
scientists interested in AI safety.Comment: 15 pages, 3 figure
Unpredictability of AI
The young field of AI Safety is still in the process of identifying its challenges and limitations. In this paper, we formally describe one such impossibility result, namely Unpredictability of AI. We prove that it is impossible to precisely and consistently predict what specific actions a smarter-than-human intelligent system will take to achieve its objectives, even if we know terminal goals of the system. In conclusion, impact of Unpredictability on AI Safety is discussed
Integrative Biological Simulation, Neuropsychology, and AI Safety
We describe a biologically-inspired research agenda with parallel tracks
aimed at AI and AI safety. The bottom-up component consists of building a
sequence of biophysically realistic simulations of simple organisms such as the
nematode , the fruit fly ,
and the zebrafish to serve as platforms for research into AI
algorithms and system architectures. The top-down component consists of an
approach to value alignment that grounds AI goal structures in neuropsychology,
broadly considered. Our belief is that parallel pursuit of these tracks will
inform the development of value-aligned AI systems that have been inspired by
embodied organisms with sensorimotor integration. An important set of side
benefits is that the research trajectories we describe here are grounded in
long-standing intellectual traditions within existing research communities and
funding structures. In addition, these research programs overlap with
significant contemporary themes in the biological and psychological sciences
such as data/model integration and reproducibility.Comment: 5 page
Philosophy and theory of artificial intelligence 2017
This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI safety; and cutting-edge developments in techniques to achieve AI, including machine learning, neural networks, dynamical systems. The book also discusses important applications of AI, including big data analytics, expert systems, cognitive architectures, and robotics. It offers a timely, yet very comprehensive snapshot of what is going on in the field of AI, especially at the interfaces between philosophy, cognitive science, ethics and computing
- …
