358,200 research outputs found

    Functional Stoichiometry at the Nicotinic Receptor. The Photon Cross Section for Phase 1 Corresponds to Two Bis-Q Molecules per Channel

    Get PDF
    These experiments examine changes in the agonist-induced conductance that occur when the agonist-receptor complex is perturbed. Voltage-clamped Electrophorus electroplaques are exposed to the photoisomerizable agonist trans-Bis-Q A 1-µs laser flash photoisomerizes some trans-Bis-Q molecules bound to receptors; because the cis configuration is not an agonist, receptor channels close within a few hundred microseconds. This effect is called phase 1. We compare (a) the fraction of channels that close during phase 1 with (b) the fraction of trans-Bis-Q molecules that undergo trans → cis photoisomerization. Parameter a is measured as the fractional diminution in voltage-clamp currents during phase 1. Parameter b is measured by changes in the optical spectra of Bis-Q solutions caused by flashes . At low flash intensities, a is twice b, which shows that the channel can be closed by photoisomerizing either of two bound agonist molecules. Conventional dose-response studies with trans-Bis-Q also give a Hill coefficient of two. As a partial control for changes in the photochemistry caused by binding of Bis-Q to receptors, spectral measurements are performed on the photoisomerizable agonist QBr, covalently bound to solubilized acetylcholine receptors from Torpedo. The bound and free agonist molecules have the same photoisomerization properties. These results verify the concept that the open state of the acetylcholine receptor channel is much more likely to be associated with the presence of two bound agonist molecules than with a single such molecule

    Communication over the network of binary switches regulates the activation of A2A_{2A} adenosine receptor

    Full text link
    Dynamics and functions of G-protein coupled receptors (GPCRs) are accurately regulated by the type of ligands that bind to the orthosteric or allosteric binding sites. To glean the structural and dynamical origin of ligand-dependent modulation of GPCR activity, we performed total \sim 5 μ\musec molecular dynamics simulations of A2A_{2A} adenosine receptor (A2A_{2A}AR) in its apo, antagonist-bound, and agonist-bound forms in an explicit water and membrane environment, and examined the corresponding dynamics and correlation between the 10 key structural motifs that serve as the allosteric hotspots in intramolecular signaling network. We dubbed these 10 structural motifs "binary switches" as they display molecular interactions that switch between two distinct states. By projecting the receptor dynamics on these binary switches that yield 2102^{10} microstates, we show that (i) the receptors in apo, antagonist-bound, and agonist-bound states explore vastly different conformational space; (ii) among the three receptor states the apo state explores the broadest range of microstates; (iii) in the presence of the agonist, the active conformation is maintained through coherent couplings among the binary switches; and (iv) to be most specific, our analysis shows that W246, located deep inside the binding cleft, can serve as both an agonist sensor and actuator of ensuing intramolecular signaling for the receptor activation.Finally, our analysis of multiple trajectories generated by inserting an agonist to the apo state underscores that the transition of the receptor from inactive to active form requires the disruption of ionic-lock in the DRY motif.Comment: 28 pages, 17 figure

    Rates and equilibria at the acetylcholine receptor of electrophorus electroplaques. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations

    Get PDF
    Kinetic measurements are employed to reconstruct the steady-state activation of acetylcholine [Ach] receptor channels in electrophorus electroplaques. Neurally evoked postsynaptic currents (PSCs) decay exponentially; at 15°C the rate constant, α, equals 1.2 ms^(-1) at 0 mV and decreases e-fold for every 86 mV as the membrane voltage is made more negative. Voltage-jump relaxations have been measured with bath-applied ACh, decamethonium, carbachol, or suberylcholine. We interpret the reciprocal relaxation time 1/τ as the sum of the rate constant α for channel closing and a first-order rate constant for channel opening. Where measureable, the opening rate increases linearly with [agonist] and does not vary with voltage. The voltage sensitivity of small steady-state conductances (e- fold for 86 mV) equals that of the closing rate α, confirming that the opening rate has little or no additional voltage sensitivity. Exposure to α-bungarotoxin irreversibly decreases the agonist-induced conductance but does not affect the relaxation kinetics. Tubocurarine reversibly reduces both the conductance and the opening rate. In the simultaneous presence of two agonist species, voltage-jump relaxations have at least two exponential components. The data are fit by a model in which (a) the channel opens as the receptor binds the second in a sequence of two agonist molecules, with a forward rate constant to 10^(7) to 2x10^(8) M^(-1)s^(-1); and (b) the channel then closes as either agonist molecule dissociates, with a voltage-dependent rate constant of 10^(2) to 3x10^(3)s^(-1)

    α1D-Adrenoceptors are responsible for the high sensitivity and the slow time-course of noradrenaline-mediated contraction in conductance arteries

    Get PDF
    The objective of this study was to determine whether the different time-course characteristics of α1-adrenoceptor-mediated contraction in arteries can be related to the subtypes involved. Contractile responses to noradrenaline (NA) were compared with inositol phosphate accumulation and extracellular signal-regulated kinase (ERK)1/2 phosphorylation after α1-agonist stimuli in the same vessels in the presence or absence of α1-antagonists in rat or in α1-subtype knockout (KO) mice. Aorta, where α1D-AR is the main functional subtype, had higher sensitivity to NA (in respect of inositol phosphate [IP], pERK1/2, and contractile response) than tail artery, where the α1A-adrenoceptor subtype is predominant. Furthermore, the contraction in aorta exhibited a slower decay after agonist removal and this was consistent in all strains harboring α1D-adrenoceptors (from rat, α1B-KO, and wild-type [WT] mice) but was not observed in the absence of the α1D-adrenoceptor signal (α1D-adrenoceptor blocked rat aorta or aorta from α1D-KO). IP formation paralleled α1-adrenoceptor-mediated contraction (agonist present or postagonist) in aorta and tail artery. High sensitivity to agonist and persistence of response after agonist removal is a property of α1D-adrenoceptors. Therefore, the preponderance of this subtype in noninnervated conductance arteries such as aorta allows responsiveness to circulating catecholamines and prevents abrupt changes in vessel caliber when the stimulus fluctuates. Conversely, in innervated distributing arteries, high local concentrations of NA are required to activate α1A-adrenoceptors for a response that is rapid but short lived allowing fine adjustment of the contractile tone by perivascular sympathetic nerves

    Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context

    Get PDF
    The aryl hydrocarbon receptor (AhR) mediates the induction of a variety of xenobiotic metabolism genes. Activation of the AhR occurs through binding to a group of structurally diverse compounds, most notably dioxins, which are exogenous ligands. Isoflavones are part of a family which include some well characterised endogenous AhR ligands. This paper analysed a novel family of these compounds, based on the structure of 2-amino-isoflavone. Initially two luciferase-based cell models, mouse H1L6.1c2 and human HG2L6.1c3, were used to identify whether the compounds had AhR agonistic and/or antagonistic properties. This analysis showed that some of the compounds were weak agonists in mouse and antagonists in human. Further analysis of two of the compounds, Chr-13 and Chr-19, was conducted using quantitative real-time PCR in rat H4IIE and human MCF-7 cells. The results indicated that Chr-13 was an agonist in rat but an antagonist in human cells. Chr-19 was shown to be an agonist in rat but more interestingly, a partial agonist in human. Luciferase induction results not only revealed that subtle differences in the structure of the compound could produce species-specific differences in response but also dictated the ability of the compound to be an AhR agonist or antagonist. Substituted 2-amino-isoflavones represent a novel group of AhR ligands that must differentially interact with the AhR ligand binding domain to produce their species-specific agonist or antagonist activity and future ligand binding analysis and docking studies with these compounds may provide insights into the differential mechanisms of action of structurally similar compounds

    In vitro and in vivo pharmacological activities of 14-o-phenylpropyloxymorphone, a potent mixed mu/delta/kappa-opioid receptor agonist with reduced constipation in mice

    Get PDF
    Pain, particularly chronic pain, is still an unsolved medical condition. Central goals in pain control are to provide analgesia of adequate efficacy and to reduce complications associated with the currently available drugs. Opioids are the mainstay for the treatment of moderate to severe pain. However, opioid pain medications also cause detrimental side effects, thus highlighting the need of innovative and safer analgesics. Opioids mediate their actions via the activation of opioid receptors, with the mu-opioid receptor as the primary target for analgesia, but also for side effects. One long-standing focus of drug discovery is the pursuit for new opioids exhibiting a favorable dissociation between analgesia and adverse effects. In this study, we describe the in vitro and in vivo pharmacological profiles of the 14-O-phenylpropyl substituted analog of the mu-opioid agonist 14-O-methyloxymorphone (14-OMO). The consequence of the substitution of the 14-O-methyl in 14-OMO with a 14-O-phenylpropyl group on in vitro binding and functional activity, and in vivo behavioral properties (nociception and gastrointestinal motility) was investigated. In binding studies, 14-O-phenylpropyloxymorphone (POMO) displayed very high affinity at mu-, delta-, and kappa-opioid receptors (Ki values in nM, mu:delta:kappa = 0.073:0.13:0.30) in rodent brain membranes, with complete loss of mu-receptor selectivity compared to 14-OMO. In guinea-pig ileum and mouse vas deferens bioassays, POMO was a highly efficacious and full agonist, being more potent than 14-OMO. In the [35S]GTPγS binding assays with membranes from CHO cells expressing human opioid receptors, POMO was a potent mu/delta-receptor full agonist and a kappa-receptor partial agonist. In vivo, POMO was highly effective in acute thermal nociception (hot-plate test, AD50= 0.7 nmol/kg) in mice after subcutaneous administration, with over 70- and 9000-fold increased potency than 14-OMO and morphine, respectively. POMO-induced antinociception is mediated through the activation of the mu-opioid receptor, and it does not involve delta- and kappa-opioid receptors. In the charcoal test, POMO produced fourfold less inhibition of the gastrointestinal transit than 14-OMO and morphine. In summary, POMO emerges as a new potent mixed mu/delta/kappa-opioid receptor agonist with reduced liability to cause constipation at antinociceptive doses

    A single extracellular amino acid in Free Fatty Acid Receptor 2 defines antagonist species selectivity and G protein selection bias

    Get PDF
    Free Fatty Acid Receptor 2 is a GPCR activated by short chain fatty acids produced in high levels in the lower gut by microbial fermentation of non-digestible carbohydrates. A major challenge in studying this receptor is that the mouse ortholog does not have significant affinity for antagonists that are able to block the human receptor. Docking of exemplar antagonists from two chemical series to homology models of both human and mouse Free Fatty Acid Receptor 2 suggested that a single lysine - arginine variation at the extracellular face of the receptor might provide the basis for antagonist selectivity and mutational swap studies confirmed this hypothesis. Extending these studies to agonist function indicated that although the lysine - arginine variation between human and mouse orthologs had limited effect on G protein-mediated signal transduction, removal of positive charge from this residue produced a signalling-biased variant of Free Fatty Acid Receptor 2 in which Gi-mediated signalling by both short chain fatty acids and synthetic agonists was maintained whilst there was marked loss of agonist potency for signalling via Gq/11 and G12/13 G proteins. A single residue at the extracellular face of the receptor thus plays key roles in both agonist and antagonist function

    A meta-analysis and systematic review of randomized controlled trials with degarelix versus gonadotropin-releasing hormone agonists for advanced prostate cancer

    Get PDF
    Our aim was to systematically evaluate the benefits of degarelix as antagonist versus agonists of gonadotropin-releasing hormones (GnRH) for the treatment of advanced prostate cancer (PC). This comparison was performed either in terms of biochemical or oncological or safety profiles. To this end we, carried out a systematic review and meta-analysis of the literature.We selected only studies directly and prospectively analyzing the two treatments in the same population (randomized phase III studies). We followed the Preferred Reporting Items for Systematic Reviews and meta-analyses process for reporting studies.After we eliminated studies according to the exclusion criteria, 9 publications were considered relevant to this review. These articles described 5 clinical trials that were eligible for inclusion. The follow-up duration in all trials did not exceed 364 days. This meta-analysis and review comprised a total of 1719 men, 1061 randomized to degarelix versus 658 to GnRH agonists treatment for advanced PC. Oncological results were evaluated only in 1 trial (CS21:408 cases) and they were not the primary endpoints of the study. Treatment emerging adverse events were reported in 61.4% and 58.8% of patients in the degarelix and GnRH agonists group, respectively (odds ratio, OR = 1.17; 95% confidence interval, 95% CI: 0.78-1.77, P > 0.1). Treatment related severe cardiovascular side effects were reported (trial CS21-30-35) in 1.6% and 3.6% of patients in the degarelix and GnRH agonists group, respectively (OR = 0.55, 95% CI: 0.26-1.14, P > 0.1).Our analysis evidences relevant limitations in particular for the comparative evaluation of the efficacy and the oncological results related to degarelix

    Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation

    Get PDF
    Most working proteins, including metabolic enzymes, transcription regulators, and membrane receptors, transporters, and ion channels, share the property of allosteric coupling. The term 'allosteric' means that these proteins mediate indirect interactions between sites that are physically separated on the protein. In the example of ligand-gated ion channels, the binding of a suitable ligand elicits local conformational changes at the binding site, which are coupled to further conformational changes in regions distant from the binding site. The physical motions finally arrive at the site of biological activity: the ion-permeating pore. The conformational changes that lead from the ligand binding to the actual opening of the pore comprise 'gating'. In 1956, del Castillo and Katz suggested that the competition between different ligands at nicotinic acetylcholine receptors (nAChRs) could be explained by formation of an intermediate, ligand-bound, yet inactive state of the receptor, which separates the active state of the receptor from the initial binding of the ligand (del Castillo & Katz, 1957). This 'binding-then-gating', two-step model went beyond the then-prevailing drug-receptor model that assumes a single bimolecular binding reaction, and paralleled Stephenson's conceptual dichotomy of 'affinity' and 'efficacy' (Stephenson, 1956). In 1965 Monod, Wyman and Changeux presented a simple allosteric model (the MWC model) (Monod et al. 1965) that explained the cooperative binding of oxygen to haemoglobin; it was adopted as an important paradigm for ligand-gated channels soon after its initial formulation (Changeux et al. 1967; Karlin, 1967; Colquhoun, 1973)
    corecore