1,212,709 research outputs found
Affinity Weighted Embedding
Supervised (linear) embedding models like Wsabie and PSI have proven
successful at ranking, recommendation and annotation tasks. However, despite
being scalable to large datasets they do not take full advantage of the extra
data due to their linear nature, and typically underfit. We propose a new class
of models which aim to provide improved performance while retaining many of the
benefits of the existing class of embedding models. Our new approach works by
iteratively learning a linear embedding model where the next iteration's
features and labels are reweighted as a function of the previous iteration. We
describe several variants of the family, and give some initial results
Effect of thiols on beta 2-adrenoceptors in human mononuclear leucocytes
The effect of the disulfide reducing agent dithiothreitol (DTT) and other thiols on binding of the beta-adrenoceptor antagonist (-)-125iodocyanopindolol (125ICYP) to human mononuclear leucocytes (MNL) was investigated. Saturation experiments and dissociation kinetics revealed two classes of specific 125ICYP binding sites, one of high and the other of low affinity, respectively. In intact MNL DTT caused a decrease in specific binding. This was due almost selectively to a decrease in the affinity of high affinity binding sites, which decreased gradually in a concentration-dependent manner to the affinity of low affinity binding sites. In MNL membranes DTT decreased not only the affinity but also the number of high affinity binding sites. The DTT effect was completely reversible by simple reoxidation on air. The structural isomers (+/-)-DTT. (-)-DTT and dithioerythritol revealed identical effects on specific binding, whereas the monothiols mercaptoethanol and alpha-monothioglycerol, having a lower redox potential, were considerably less effective. In the same concentration range that influenced specific binding. DTT stimulated intracellular cAMP production. These results suggest functionally important disulfide bridges which regulate the affinity of beta-adrenoceptor binding sites in human MNL. They stabilize the receptor in a high affinity state; their reduction causes the conversion of the high affinity state into a low affinity state in a process associated with stimulation of adenylate cyclase. Available evidence indicates that a similar transformation is made by beta-adrenoceptor agonists. Consequently low affinity 125ICYP binding sites preexistent in untreated cells could represent a reduced receptor state resulting from agonist-receptor interaction in vivo
Thermodynamic bounds on the ultra- and infra-affinity of Hsp70 for its substrates
The 70 kDa Heat Shock Proteins Hsp70 have several essential functions in
living systems, such as protecting cells against protein aggregation, assisting
protein folding, remodeling protein complexes and driving the translocation
into organelles. These functions require high affinity for non-specific
amino-acid sequences that are ubiquitous in proteins. It has been recently
shown that this high affinity, called ultra-affinity, depends on a process
driven out of equilibrium by ATP hydrolysis. Here we establish the
thermodynamic bounds for ultra-affinity, and further show that the same
reaction scheme can in principle be used both to strengthen and to weaken
affinities (leading in this case to infra-affinity). We show that cofactors are
essential to achieve affinity beyond the equilibrium range. Finally, biological
implications are discussed.Comment: 14 pages, 5 figure
Improving binding affinity through cyclization
Cancer chemotherapy results in systematic damage as the drugs used are also toxic to benign tissue. Sensitizing a cancer cell to therapy by interfering with the DNA repair mechanisms would decrease overall toxicity, as the necessary dosage of chemotherapy drugs would be lowered. The Hartman lab developed a peptide (8.6) that binds with a KD of 1 μM to the C-terminal domain of breast cancer associated protein (BRCA1), blocking homologous recombination. The crystal structure of the peptide shows the tyrosine and threonine residues are close together, suggesting that by cyclizing these positions, the peptide may already be constrained into its bound conformation. A series of dibromomethylnaphthalene linkers of various length were synthesized and cyclized through alkylation of the cysteine residues on peptide 8.6. The binding of the cyclic peptides with the BRCA1 (BRCT)2 domain will be compared to peptide 8.6 through the use of fluorescence polarization.https://scholarscompass.vcu.edu/uresposters/1248/thumbnail.jp
DG Affinity of DQ-modules
In this paper, we prove the dg affinity of formal deformation algebroid
stacks over complex smooth algebraic varieties. For that purpose, we introduce
the triangulated category of formal deformation modules which are
cohomologically complete and whose associated graded module is quasi-coherent.Comment: 21 pages, references adde
- …
