1,749 research outputs found
Neurofeedback Therapy for Enhancing Visual Attention: State-of-the-Art and Challenges
We have witnessed a rapid development of brain-computer interfaces (BCIs) linking the brain to external devices. BCIs can be utilized to treat neurological conditions and even to augment brain functions. BCIs offer a promising treatment for mental disorders, including disorders of attention. Here we review the current state of the art and challenges of attention-based BCIs, with a focus on visual attention. Attention-based BCIs utilize electroencephalograms (EEGs) or other recording techniques to generate neurofeedback, which patients use to improve their attention, a complex cognitive function. Although progress has been made in the studies of neural mechanisms of attention, extraction of attention-related neural signals needed for BCI operations is a difficult problem. To attain good BCI performance, it is important to select the features of neural activity that represent attentional signals. BCI decoding of attention-related activity may be hindered by the presence of different neural signals. Therefore, BCI accuracy can be improved by signal processing algorithms that dissociate signals of interest from irrelevant activities. Notwithstanding recent progress, optimal processing of attentional neural signals remains a fundamental challenge for the development of efficient therapies for disorders of attention
Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis
Canonical correlation analysis (CCA) has been one of the most popular methods
for frequency recognition in steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs). Despite its efficiency, a potential problem
is that using pre-constructed sine-cosine waves as the required reference
signals in the CCA method often does not result in the optimal recognition
accuracy due to their lack of features from the real EEG data. To address this
problem, this study proposes a novel method based on multiset canonical
correlation analysis (MsetCCA) to optimize the reference signals used in the
CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple
linear transforms that implement joint spatial filtering to maximize the
overall correlation among canonical variates, and hence extracts SSVEP common
features from multiple sets of EEG data recorded at the same stimulus
frequency. The optimized reference signals are formed by combination of the
common features and completely based on training data. Experimental study with
EEG data from ten healthy subjects demonstrates that the MsetCCA method
improves the recognition accuracy of SSVEP frequency in comparison with the CCA
method and other two competing methods (multiway CCA (MwayCCA) and phase
constrained CCA (PCCA)), especially for a small number of channels and a short
time window length. The superiority indicates that the proposed MsetCCA method
is a new promising candidate for frequency recognition in SSVEP-based BCIs
EEG analytics for early detection of autism spectrum disorder: a data-driven approach
Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.This research was supported by National Institute of Mental Health (NIMH) grant R21 MH 093753 (to WJB), National Institute on Deafness and Other Communication Disorders (NIDCD) grant R21 DC08647 (to HTF), NIDCD grant R01 DC 10290 (to HTF and CAN) and a grant from the Simons Foundation (to CAN, HTF, and WJB). We are especially grateful to the staff and students who worked on the study and to the families who participated. (R21 MH 093753 - National Institute of Mental Health (NIMH); R21 DC08647 - National Institute on Deafness and Other Communication Disorders (NIDCD); R01 DC 10290 - NIDCD; Simons Foundation)Published versio
Combining complex networks and data mining: why and how
The increasing power of computer technology does not dispense with the need
to extract meaningful in- formation out of data sets of ever growing size, and
indeed typically exacerbates the complexity of this task. To tackle this
general problem, two methods have emerged, at chronologically different times,
that are now commonly used in the scientific community: data mining and complex
network theory. Not only do complex network analysis and data mining share the
same general goal, that of extracting information from complex systems to
ultimately create a new compact quantifiable representation, but they also
often address similar problems too. In the face of that, a surprisingly low
number of researchers turn out to resort to both methodologies. One may then be
tempted to conclude that these two fields are either largely redundant or
totally antithetic. The starting point of this review is that this state of
affairs should be put down to contingent rather than conceptual differences,
and that these two fields can in fact advantageously be used in a synergistic
manner. An overview of both fields is first provided, some fundamental concepts
of which are illustrated. A variety of contexts in which complex network theory
and data mining have been used in a synergistic manner are then presented.
Contexts in which the appropriate integration of complex network metrics can
lead to improved classification rates with respect to classical data mining
algorithms and, conversely, contexts in which data mining can be used to tackle
important issues in complex network theory applications are illustrated.
Finally, ways to achieve a tighter integration between complex networks and
data mining, and open lines of research are discussed.Comment: 58 pages, 19 figure
Bacteria Hunt: Evaluating multi-paradigm BCI interaction
The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having one condition in which the subject played the game with real feedback, and another with sham feedback. The feedback did not seem to affect the game experience (such as sense of control and tension) or the objective indicators of relaxation, alpha activity and heart rate. The results are discussed with regard to clinical neurofeedback studies. The second goal was to look into possible interactions between the two BCI paradigms used in the game: steady-state visually-evoked potentials (SSVEP) as an indicator of concentration, and alpha activity as a measure of relaxation. SSVEP stimulation activates the cortex and can thus block the alpha rhythm. Despite this effect, subjects were able to keep their alpha power up, in compliance with the instructed relaxation task. In addition to the main goals, a new SSVEP detection algorithm was developed and evaluated
Using recurrent neural networks to compare movement patterns in ADHD and normally developing children based on acceleration signals from the wrist and ankle
Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental condition that affects, among other things, the movement patterns of children suffering it. Inattention, hyperactivity and impulsive behaviors, major symptoms characterizing ADHD, result not only in differences in the activity levels but also in the activity patterns themselves. This paper proposes and trains a Recurrent Neural Network (RNN) to characterize the moment patterns for normally developing children and uses the trained RNN in order to assess differences in the movement patterns from children with ADHD. Each child is monitored for 24 consecutive hours, in a normal school day, wearing 4 tri-axial accelerometers (one at each wrist and ankle). The results for both medicated and non-medicated children with ADHD, and for different activity levels are presented. While the movement patterns for non-medicated ADHD diagnosed participants showed higher differences as compared to those of normally developing participants, those differences were only statistically significant for medium intensity movements. On the other hand, the medicated ADHD participants showed statistically different behavior for low intensity movements
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website
The electroencephalogram (EEG) provides a non-invasive, minimally
restrictive, and relatively low cost measure of mesoscale brain dynamics with
high temporal resolution. Although signals recorded in parallel by multiple,
near-adjacent EEG scalp electrode channels are highly-correlated and combine
signals from many different sources, biological and non-biological, independent
component analysis (ICA) has been shown to isolate the various source generator
processes underlying those recordings. Independent components (IC) found by ICA
decomposition can be manually inspected, selected, and interpreted, but doing
so requires both time and practice as ICs have no particular order or intrinsic
interpretations and therefore require further study of their properties.
Alternatively, sufficiently-accurate automated IC classifiers can be used to
classify ICs into broad source categories, speeding the analysis of EEG studies
with many subjects and enabling the use of ICA decomposition in near-real-time
applications. While many such classifiers have been proposed recently, this
work presents the ICLabel project comprised of (1) an IC dataset containing
spatiotemporal measures for over 200,000 ICs from more than 6,000 EEG
recordings, (2) a website for collecting crowdsourced IC labels and educating
EEG researchers and practitioners about IC interpretation, and (3) the
automated ICLabel classifier. The classifier improves upon existing methods in
two ways: by improving the accuracy of the computed label estimates and by
enhancing its computational efficiency. The ICLabel classifier outperforms or
performs comparably to the previous best publicly available method for all
measured IC categories while computing those labels ten times faster than that
classifier as shown in a rigorous comparison against all other publicly
available EEG IC classifiers.Comment: Intended for NeuroImage. Updated from version one with minor
editorial and figure change
- …
