78,426 research outputs found
Protein connectivity in chemotaxis receptor complexes
The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination
The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability
USP21 is a centrosome-associated deubiquitylase (DUB) that has been implicated in the formation of primary cilia - crucial organelles for the regulation of the Hedgehog (Hh) signaling pathway in vertebrates. Here, we identify KCTD6 - a cullin-3 E3-ligase substrate adapter that has been previously linked to Hh signaling - as well as Gli1, the key transcription factor responsible for Hh signal amplification, as new interacting partners of USP21. We identify a cryptic structured protein interaction domain in KCTD6, which is predicted to have a similar fold to Smr domains. Importantly, we show that both depletion and overexpression of catalytically active USP21 suppress Gli1-dependent transcription. Gli proteins are negatively regulated through protein kinase A (PKA)-dependent phosphorylation. We provide evidence that USP21 recruits and stabilises Gli1 at the centrosome where it promotes its phosphorylation by PKA. By revealing an intriguing functional pairing between a spatially restricted deubiquitylase and a kinase, our study highlights the centrosome as an important hub for signal coordination
Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification
Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3’ untranslated regions is associated with decreased relative transcript abundance and defective RNA 30 end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode
A blue light receptor that mediates RNA binding and translational regulation
Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL–RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities
How to rewire the host cell: A home improvement guide for intracellular bacteria.
Intracellular bacterial pathogens have developed versatile strategies to generate niches inside the eukaryotic cells that allow them to survive and proliferate. Making a home inside the host offers many advantages; however, intracellular bacteria must also overcome many challenges, such as disarming innate immune signaling and accessing host nutrient supplies. Gaining entry into the cell and avoiding degradation is only the beginning of a successful intracellular lifestyle. To establish these replicative niches, intracellular pathogens secrete various virulence proteins, called effectors, to manipulate host cell signaling pathways and subvert host defense mechanisms. Many effectors mimic host enzymes, whereas others perform entirely novel enzymatic functions. A large volume of work has been done to understand how intracellular bacteria manipulate membrane trafficking pathways. In this review, we focus on how intracellular bacterial pathogens target innate immune signaling, the unfolded protein response, autophagy, and cellular metabolism and exploit these pathways to their advantage. We also discuss how bacterial pathogens can alter host gene expression by directly modifying histones or hijacking the ubiquitination machinery to take control of several host signaling pathways
Backbone chemical shift assignments of human 14-3-3
14-3-3 proteins are a group of seven dimeric adapter proteins that exert
their biological function by interacting with hundreds of phosphorylated
proteins, thus influencing their sub-cellular localization, activity or
stability in the cell. Due to this remarkable interaction network, 14-3-3
proteins have been associated with several pathologies and the protein-protein
interactions established with a number of partners are now considered promising
drug targets. The activity of 14-3-3 proteins is often isoform specific and to
our knowledge only one out of seven isoforms, 14-3-3, has been assigned.
Despite the availability of the crystal structures of all seven isoforms of
14-3-3, the additional NMR assignments of 14-3-3 proteins are important for
both biological mechanism studies and chemical biology approaches. Herein, we
present a robust backbone assignment of 14-3-3, which will allow
advances in the discovery of potential therapeutic compounds. This assignment
is now being applied to the discovery of both inhibitors and stabilizers of
14-3-3 protein-protein interactions
The biogenesis pathway of tRNA-derived piRNAs in Bombyx germ cells.
Transfer RNAs (tRNAs) function in translational machinery and further serves as a source of short non-coding RNAs (ncRNAs). tRNA-derived ncRNAs show differential expression profiles and play roles in many biological processes beyond translation. Molecular mechanisms that shape and regulate their expression profiles are largely unknown. Here, we report the mechanism of biogenesis for tRNA-derived Piwi-interacting RNAs (td-piRNAs) expressed in Bombyx BmN4 cells. In the cells, two cytoplasmic tRNA species, tRNAAspGUC and tRNAHisGUG, served as major sources for td-piRNAs, which were derived from the 5\u27-part of the respective tRNAs. cP-RNA-seq identified the two tRNAs as major substrates for the 5\u27-tRNA halves as well, suggesting a previously uncharacterized link between 5\u27-tRNA halves and td-piRNAs. An increase in levels of the 5\u27-tRNA halves, induced by BmNSun2 knockdown, enhanced the td-piRNA expression levels without quantitative change in mature tRNAs, indicating that 5\u27-tRNA halves, not mature tRNAs, are the direct precursors for td-piRNAs. For the generation of tRNAHisGUG-derived piRNAs, BmThg1l-mediated nucleotide addition to -1 position of tRNAHisGUG was required, revealing an important function of BmThg1l in piRNA biogenesis. Our study advances the understanding of biogenesis mechanisms and the genesis of specific expression profiles for tRNA-derived ncRNAs
Recommended from our members
Transcriptome and translatome profiles of Streptomyces species in different growth phases.
Streptomyces are efficient producers of various bioactive compounds, which are mostly synthesized by their secondary metabolite biosynthetic gene clusters (smBGCs). The smBGCs are tightly controlled by complex regulatory systems at transcriptional and translational levels to effectively utilize precursors that are supplied by primary metabolism. Thus, dynamic changes in gene expression in response to cellular status at both the transcriptional and translational levels should be elucidated to directly reflect protein levels, rapid downstream responses, and cellular energy costs. In this study, RNA-Seq and ribosome profiling were performed for five industrially important Streptomyces species at different growth phases, for the deep sequencing of total mRNA, and only those mRNA fragments that are protected by translating ribosomes, respectively. Herein, 12.0 to 763.8 million raw reads were sufficiently obtained with high quality of more than 80% for the Phred score Q30 and high reproducibility. These data provide a comprehensive understanding of the transcriptional and translational landscape across the Streptomyces species and contribute to facilitating the rational engineering of secondary metabolite production
- …
