30,838 research outputs found

    Beyond Worst-Case (In)approximability of Nonsubmodular Influence Maximization

    Full text link
    We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a (1āˆ’1/e)(1-1/e)-factor approximation algorithm if the influence function is submodular. Otherwise, in the worst case, the problem is NP-hard to approximate to within a factor of N1āˆ’ĪµN^{1-\varepsilon}. This paper studies whether this worst-case hardness result can be circumvented by making assumptions about either the underlying network topology or the cascade model. All of our assumptions are motivated by many real life social network cascades. First, we present strong inapproximability results for a very restricted class of networks called the (stochastic) hierarchical blockmodel, a special case of the well-studied (stochastic) blockmodel in which relationships between blocks admit a tree structure. We also provide a dynamic-program based polynomial time algorithm which optimally computes a directed variant of the influence maximization problem on hierarchical blockmodel networks. Our algorithm indicates that the inapproximability result is due to the bidirectionality of influence between agent-blocks. Second, we present strong inapproximability results for a class of influence functions that are "almost" submodular, called 2-quasi-submodular. Our inapproximability results hold even for any 2-quasi-submodular ff fixed in advance. This result also indicates that the "threshold" between submodularity and nonsubmodularity is sharp, regarding the approximability of influence maximization.Comment: 53 pages, 20 figures; Conference short version - WINE 2017: The 13th Conference on Web and Internet Economics; Journal full version - ACM: Transactions on Computation Theory, 201

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    An Analysis of Publication Venues for Automatic Differentiation Research

    Get PDF
    We present the results of our analysis of publication venues for papers on automatic differentiation (AD), covering academic journals and conference proceedings. Our data are collected from the AD publications database maintained by the autodiff.org community website. The database is purpose-built for the AD field and is expanding via submissions by AD researchers. Therefore, it provides a relatively noise-free list of publications relating to the field. However, it does include noise in the form of variant spellings of journal and conference names. We handle this by manually correcting and merging these variants under the official names of corresponding venues. We also share the raw data we get after these corrections.Comment: 6 pages, 3 figure
    • ā€¦
    corecore