36,780 research outputs found

    On-the-fly Approximation of Multivariate Total Variation Minimization

    Full text link
    In the context of change-point detection, addressed by Total Variation minimization strategies, an efficient on-the-fly algorithm has been designed leading to exact solutions for univariate data. In this contribution, an extension of such an on-the-fly strategy to multivariate data is investigated. The proposed algorithm relies on the local validation of the Karush-Kuhn-Tucker conditions on the dual problem. Showing that the non-local nature of the multivariate setting precludes to obtain an exact on-the-fly solution, we devise an on-the-fly algorithm delivering an approximate solution, whose quality is controlled by a practitioner-tunable parameter, acting as a trade-off between quality and computational cost. Performance assessment shows that high quality solutions are obtained on-the-fly while benefiting of computational costs several orders of magnitude lower than standard iterative procedures. The proposed algorithm thus provides practitioners with an efficient multivariate change-point detection on-the-fly procedure

    Sampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes

    Get PDF
    This article deals with stochastic processes endowed with the Markov (memoryless) property and evolving over general (uncountable) state spaces. The models further depend on a non-deterministic quantity in the form of a control input, which can be selected to affect the probabilistic dynamics. We address the computation of maximal reach-avoid specifications, together with the synthesis of the corresponding optimal controllers. The reach-avoid specification deals with assessing the likelihood that any finite-horizon trajectory of the model enters a given goal set, while avoiding a given set of undesired states. This article newly provides an approximate computational scheme for the reach-avoid specification based on the Fitted Value Iteration algorithm, which hinges on random sample extractions, and gives a-priori computable formal probabilistic bounds on the error made by the approximation algorithm: as such, the output of the numerical scheme is quantitatively assessed and thus meaningful for safety-critical applications. Furthermore, we provide tighter probabilistic error bounds that are sample-based. The overall computational scheme is put in relationship with alternative approximation algorithms in the literature, and finally its performance is practically assessed over a benchmark case study

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics
    • …
    corecore