417 research outputs found

    Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer

    Get PDF
    Amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) having an ultra-thin nitrogenated a-IGZO (a-IGZO:N) layer sandwiched at the channel/gate dielectric interface are fabricated. It is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies within the a-IGZO:N layer is suppressed due to the formation of N-Ga bonds. Meanwhile, low frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops as the nitrogen content within the a-IGZO:N layer increases. The improved interface quality upon nitrogen doping agrees with the enhanced bias stress stability of the a-IGZO TFTs.This work was supported in part by the State Key Program for Basic Research of China under Grant Nos. 2010CB327504, 2011CB922100, and 2011CB301900; in part by the National Natural Science Foundation of China under Grant Nos. 60936004 and 11104130; in part by the Natural Science Foundation of Jiangsu Province under Grant Nos. BK2011556 and BK2011050; and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions

    Indium-Gallium-Zinc Oxide Thin-Film Transistors for Active-Matrix Flat-Panel Displays

    Get PDF
    Amorphous oxide semiconductors (AOSs) including amorphous InGaZnO (a-IGZO) areexpected to be used as the thin-film semiconducting materials for TFTs in the next-generation ultra-high definition (UHD) active-matrix flat-panel displays (AM-FPDs). a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays (OLEDs), large and fast liquid crystal displays (LCDs) as well as three-dimensional (3D) displays, which cannot be satisfied using conventional amorphous silicon (a-Si) or polysilicon (poly-Si) TFTs. In particular, a-IGZO TFTs satisfy two significant requirements of the backplane technology: high field-effect mobility and large-area uniformity.In this work, a robust process for fabrication of bottom-gate and top-gate a-IGZO TFTs is presented. An analytical drain current model for a-IGZO TFTs is proposed and its validation is demonstrated through experimental results. The instability mechanisms in a-IGZO TFTs under high current stress is investigated through low-frequency noise measurements. For the first time, the effect of engineered glass surface on the performance and reliability of bottom-gate a-IGZO TFTs is reported. The effect of source and drain metal contacts on electrical properties of a-IGZO TFTs including their effective channel lengths is studied. In particular, a-IGZO TFTs with Molybdenum versus Titanium source and drain electrodes are investigated. Finally, the potential of aluminum substrates for use in flexible display applications is demonstrated by fabrication of high performance a-IGZO TFTs on aluminum substrates and investigation of their stability under high current electrical stress as well as tensile and compressive strain

    Modeling of current—voltage characteristics for double‐gate a‐IGZO TFTs and its application to AMLCDs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92033/1/JSID20.5.237.pd

    Amorphous In-Ga-Zn-O Thin-Film Transistors for Next Generation Ultra-High Definition Active-Matrix Liquid Crystal Displays.

    Full text link
    Next generation ultra-high definition (UHD) active-matrix flat-panel displays have resolutions of 3840x2160 (4K) or 7680x4320 (8K) pixels shown at 120 Hz. The UHD display is expected to bring about immersive viewing experiences and perceived realness. The amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) is a prime candidate to be the backplane technology for UHD active-matrix liquid crystal displays (AM-LCDs) because it simultaneously fulfills two critical requirements: (i) sufficiently high field-effect mobility and (ii) uniform deposition in the amorphous phase over a large area. We have developed a robust a-IGZO density of states (DOS) model based on a combination of experimental results and information available in the literature. The impact of oxygen partial pressure during a-IGZO deposition on TFT electrical properties/instability is studied. Photoluminescence (PL) spectra are measured for a IGZO thin films of different processing conditions to identify the most likely electron-hole recombination. For the first time, we report the PL spectra measured within the a IGZO TFT channel region, and differences before/after bias-temperature stress (BTS) are compared. To evaluate the reliability of a-IGZO TFTs for UHD AM-LCD backplane, we have studied its ac BTS instability using a comprehensive set of conditions including unipolar/bipolar pulses, frequency, duty cycle, and drain biases. The TFT dynamic response, including charging characteristics and feedthrough voltage, are studied within the context of 4K and 8K UHD AM-LCD and are compared with hydrogenated amorphous silicon technology. We show that the a-IGZO TFT is fully capable of supporting 8K UHD at 480 Hz. In addition, it is feasible to reduce a-IGZO TFT feedthrough voltage by controlling for non-abrupt TFT switch-off.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111526/1/ekyu_1.pd

    Physical characterization of amorphous In-Ga-Zn-O thin-film transistors with direct-contact asymmetric graphene electrode

    Get PDF
    High performance a-IGZO thin-film transistors (TFTs) are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm) were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure. © 2014 Author(s).1
    corecore