1,674 research outputs found

    Electrocardiographic patch devices and contemporary wireless cardiac monitoring.

    Get PDF
    Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery

    The first case of the Reveal LINQ™ Insertable Cardiac Monitor implanted in a child in Malta

    Get PDF
    Background: The Reveal LINQ™ Insertable Cardiac Monitor (ICM) or Implantable Loop recorder (ILR), is a miniaturized, subcutaneous, single lead, electrocardiographic monitoring device which has been extensively used in the differential diagnosis of unexplained syncope and palpitations in adults. Patient Description: We describe an asymptomatic 20-month-old boy, noted to have incidental bradycardia on routine examination and in whom Holter monitoring revealed complete heart block (CHB). Over 1 year, the longest recorded pause lengthened from 1.8 seconds to 3.6 seconds. Results: The Reveal LINQ™ ICM was inserted for long-term monitoring of the CHB. The device will record the electrocardiogram (ECG) continuously for up to 3 years, freezing in its memory any significant arrhythmic events. This will enable the diagnosis of the longest pauses, confirm whether they are lengthening over time and assist with the decision of pacemaker implantation. Conclusion: The Reveal LINQ™ ICM is much smaller than the conventional loop recorder and has been shown to be ideal for close monitoring of asymptomatic yet potentially dangerous arrhythmias in young children.peer-reviewe

    Accuracy of methods for detecting an irregular pulse and suspected atrial fibrillation: a systematic review and meta-analysis

    Get PDF
    Background: Pulse palpation has been recommended as the first step of screening to detect atrial fibrillation. We aimed to determine and compare the accuracy of different methods for detecting pulse irregularities caused by atrial fibrillation. Methods: We systematically searched MEDLINE, EMBASE, CINAHL and LILACS until 16 March 2015. Two reviewers identified eligible studies, extracted data and appraised quality using the QUADAS-2 instrument. Meta-analysis, using the bivariate hierarchical random effects method, determined average operating points for sensitivities, specificities, positive and negative likelihood ratios (PLR, NLR); we constructed summary receiver operating characteristic plots. Results: Twenty-one studies investigated 39 interventions (n = 15,129 pulse assessments) for detecting atrial fibrillation. Compared to 12-lead electrocardiography (ECG) diagnosed atrial fibrillation, blood pressure monitors (BPMs; seven interventions) and non-12-lead ECGs (20 interventions) had the greatest accuracy for detecting pulse irregularities attributable to atrial fibrillation (BPM: sensitivity 0.98 (95% confidence interval (CI) 0.92–1.00), specificity 0.92 (95% CI 0.88–0.95), PLR 12.1 (95% CI 8.2–17.8) and NLR 0.02 (95% CI 0.00–0.09); non-12-lead ECG: sensitivity 0.91 (95% CI 0.86–0.94), specificity 0.95 (95% CI 0.92–0.97), PLR 20.1 (95% CI 12–33.7), NLR 0.09 (95% CI 0.06–0.14)). There were similar findings for smartphone applications (six interventions) although these studies were small in size. The sensitivity and specificity of pulse palpation (six interventions) were 0.92 (95% CI 0.85–0.96) and 0.82 (95% CI 0.76–0.88), respectively (PLR 5.2 (95% CI 3.8–7.2), NLR 0.1 (95% CI 0.05–0.18)). Conclusions: BPMs and non-12-lead ECG were most accurate for detecting pulse irregularities caused by atrial fibrillation; other technologies may therefore be pragmatic alternatives to pulse palpation for the first step of atrial fibrillation screening

    A pilot study of patch Holter electrocardiograph recordings in healthy cats

    Get PDF
    Background: A patch Holter electrocardiograph (P-Holter) is cordless, making it lightweight, unlike the conventional Holter electrocardiograph (C-Holter). A P-Holter can also take continuous measurements for up to 14 days without replacing the battery or SD card.Aim: To compare the performance of the P-Holter and the C-Holter in healthy cats. Additionally, we aimed to investigate whether multiday recordings with the P-Holter decrease sympathetic nerve activity or improve the accuracy of arrhythmia detection.Methods: Five healthy domestic short-haired cats were used for this study. Both a P-Holter and C-Holter were used on the first day, but only the P-Holter was used on days 2–6. The evaluated variables were the analyzable time of both Holter types, heart rate (HR), HR variability (HRV), and the number of arrhythmia occurrences.Results: For two out of the five cats, measurement of P-Holter was interrupted. Eventually, continuous recordings using the P-Holters were able to be collected from all individuals for 6 days. The 24 hours analyzable time from the P-Holter and C-Holter was almost identical (p = 0.94). The 24 hours mean HR did not differ across Holter types (p = 0.67). In addition, the timing of the occurrences of arrhythmias was almost identical to the P-Holter and C-Holter. Results of HRV suggested that sympathetic nerve activity was likely to decrease and vagal nerve activity was likely to increase after 4–5 days of measurement, compared to the second day of measurement (p < 0.05). When only the P-Holter was installed, the number of arrhythmia occurrences was similar on days 2–6.Conclusion: In this study, the P-Holter may be as useful as the C-Holter in cats with suspected intermittent arrhythmias, although the P-Holters were placed on cats without a clinical indication. However, cats may have individual differences in their adaptation to the device. P-Holter recordings taken for more than 4–5 days may allow the cat to acclimate to the device and reduce sympathetic nerve activity. The accuracy of arrhythmia detection across multiday P-Holter recordings requires further investigation using clinical cases

    The role of electrocardiography in occupational medicine, from einthoven’s invention to the digital era of wearable devices

    Get PDF
    Clinical-instrumental investigations, such as electrocardiography (ECG), represent a corollary of a procedures that, nowadays, is called upon as part of the principles of precision medicine. However when carrying out the professional routine examinations, most tend to ignore how a “simple” instrument can offer indispensable support in clinical practice, even in occupational medicine. The advent of the digital age, made of silicon and printed circuit boards, has allowed the miniaturization of the electronic components of these electro-medical devices. Finally, the adoption of patient wearables in medicine has been rapidly expanding worldwide for a number of years. This has been driven mainly by consumers’ demand to monitor their own health. With the ongoing research and development of new features capable of assessing and transmitting real-time biometric data, the impact of wearables on cardiovascular management has become inevitable. Despite the potential offered by this technology, as evident from the scientific literature, the application of these devices in the field of health and safety in the workplace is still limited. This may also be due to the lack of targeted scientific research. While offering great potential, it is very important to consider and evaluate ethical aspects related to the use of these smart devices, such as the management of the collected data relating to the physiological parameters and the location of the worker. This technology is to be considered as being aimed at monitoring the subject’s physiological parameters, and not at the diagnosis of any pathological condition, which should always be on charge of the medical specialist We conducted a review of the evolution of the role that electrophysiology plays as part of occupational health and safety management and on its possible future use, thanks to ongoing technological innovation

    Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field

    Get PDF
    Early detection of physiological deterioration has been shown to improve patient outcomes. Due to recent improvements in technology, comprehensive outpatient vital signs monitoring is now possible. This is the first review to collate information on all wearable devices on the market for outpatient physiological monitoring. A scoping review was undertaken. The monitors reviewed were limited to those that can function in the outpatient setting with minimal restrictions on the patient’s normal lifestyle, while measuring any or all of the vital signs: heart rate, ECG, oxygen saturation, respiration rate, blood pressure and temperature. A total of 270 papers were included in the review. Thirty wearable monitors were examined: 6 patches, 3 clothing-based monitors, 4 chest straps, 2 upper arm bands and 15 wristbands. The monitoring of vital signs in the outpatient setting is a developing field with differing levels of evidence for each monitor. The most common clinical application was heart rate monitoring. Blood pressure and oxygen saturation measurements were the least common applications. There is a need for clinical validation studies in the outpatient setting to prove the potential of many of the monitors identified. Research in this area is in its infancy. Future research should look at aggregating the results of validity and reliability and patient outcome studies for each monitor and between different devices. This would provide a more holistic overview of the potential for the clinical use of each device

    Guidance for Rebooting Electrophysiology Through the COVID-19 Pandemic From the Heart Rhythm Society and the American Heart Association Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology: Endorsed by the American College of Cardiology

    Get PDF
    © 2020 The Heart Rhythm Society, the American Heart Association, Inc., and the American College of Cardiology Foundation Coronavirus disease 2019 (COVID-19) has presented substantial challenges to patient care and impacted health care delivery, including cardiac electrophysiology practice throughout the globe. Based upon the undetermined course and regional variability of the pandemic, there is uncertainty as to how and when to resume and deliver electrophysiology services for arrhythmia patients. This joint document from representatives of the Heart Rhythm Society, American Heart Association, and American College of Cardiology seeks to provide guidance for clinicians and institutions reestablishing safe electrophysiological care. To achieve this aim, we address regional and local COVID-19 disease status, the role of viral screening and serologic testing, return-to-work considerations for exposed or infected health care workers, risk stratification and management strategies based on COVID-19 disease burden, institutional preparedness for resumption of elective procedures, patient preparation and communication, prioritization of procedures, and development of outpatient and periprocedural care pathways
    • …
    corecore