1,928 research outputs found

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    BCAS: A Web-enabled and GIS-based Decision Support System for the Diagnosis and Treatment of Breast Cancer

    Get PDF
    For decades, geographical variations in cancer rates have been observed but the precise determinants of such geographic differences in breast cancer development are unclear. Various statistical models have been proposed. Applications of these models, however, require that the data be assembled from a variety of sources, converted into the statistical models’ parameters and delivered effectively to researchers and policy makers. A web-enabled and GIS-based system can be developed to provide the needed functionality. This article overviews the conceptual web-enabled and GIS-based system (BCAS), illustrates the system’s use in diagnosing and treating breast cancer and examines the potential benefits and implications for breast cancer research and practice

    A Decision Technology System To Advance the Diagnosis and Treatment of Breast Cancer

    Get PDF
    Geographical variations in cancer rates have been observed for decades. Described spatial patterns and trends have provided clues for generating hypotheses about the etiology of cancer. For breast cancer, investigators have demonstrated that some variation can be explained by differences in the population distribution of known breast cancer risk factors such as menstrual and reproductive variables (Laden, Spiegelman, and Neas, 1997; Robbins, Bescianini, and Kelsey, 1997; Sturgeon, Schairer, and Gail, 1995). However, regional patterns also may reflect the effects of Workshop on Hormones, Hormone Metabolism, Environment, and Breast Cancer (1995): (a) environmental hazards (such as air and water pollution), (b) demographics and the lifestyle of a mobile population, (c) subgroup susceptibility, (d) changes and advances in medical practice and healthcare management, and (e) other factors. To accurately measure breast cancer risk in individuals and population groups, it is necessary to singly and jointly assess the association between such risk and the hypothesized factors. Various statistical models will be needed to determine the potential relationships between breast cancer development and estimated exposures to environmental contamination. To apply the models, data must be assembled from a variety of sources, converted into the statistical models’ parameters, and delivered effectively to researchers and policy makers. A Web-enabled decision technology system can be developed to provide the needed functionality. This chapter will present a conceptual architecture for such a decision technology system. First, there will be a brief overview of a typical geographical analysis. Next, the chapter will present the conceptual Web-based decision technology system and illustrate how the system can assist users in diagnosing and treating breast cancer. The chapter will conclude with an examination of the potential benefits from system use and the implications for breast cancer research and practice
    • …
    corecore