4,215 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Stability and Frequency Regulation of Inverters with Capacitive Inertia

    Get PDF
    In this paper, we address the problem of stability and frequency regulation of a recently proposed inverter. In this type of inverter, the DC-side capacitor emulates the inertia of a synchronous generator. First, we remodel the dynamics from the electrical power perspective. Second, using this model, we show that the system is stable if connected to a constant power load, and the frequency can be regulated by a suitable choice of the controller. Next, and as the main focus of this paper, we analyze the stability of a network of these inverters, and show that frequency regulation can be achieved by using an appropriate controller design. Finally, a numerical example is provided which illustrates the effectiveness of the method

    Frequency support characteristics of grid-interactive power converters based on the synchronous power controller

    Get PDF
    Grid-interactive converters with primary frequency control and inertia emulation have emerged and are promising for future renewable generation plants because of the contribution in power system stabilization. This paper gives a synchronous active power control solution for gridinteractive converters , as a way to emulate synchronous generators for inerita characteristics and load sharing. As design considerations, the virtual angle stability and transient response are both analyzed, and the detailed implementation structure is also given without entailing any difficulty in practice. The analytical and experimental validation of frequency support characteristics differentiates the work from other publications on generator emulation control. The 10 kW simulation and experimental frequency sweep tests on a regenerative source test bed present good performance of the proposed control in showing inertia and droop characteristics, as well as the controllable transient response.Peer ReviewedPostprint (author's final draft

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    Data-driven Estimation of the Power Grid Inertia with Increased Levels of Renewable Generation Resources

    Get PDF
    The thesis investigates methods for estimating inertia in systems at different levels of renewable energy penetrations. Estimating renewable generators\u27 inertia is challenging because their structures differ from traditional generators. Moreover, the power generated from renewable energy resources is not stable, depending on weather conditions. When a power grid has a disturbance, photovoltaic inverter control influences a power grid inertia by different controllers, such as power factor and reactive power control, to bring a power grid back to a steady state. The changing reactive power impacts the frequency, which strongly relates to inertia and increases the inertia estimation problem. Several papers proposed different approaches to estimating renewable generators\u27 inertia. The two main categories of estimating inertia are model-based and measurement-based methods. The model-based methods mimic an actual renewable generator behavior to calculate inertia. It is a complicated model specialized for specific renewable devices, but unlike the measurement-based methods, it can estimate the inertia in the steady state. The measurement-based methods find the patterns in measured data and use classification or regression functions to calculate inertia. A measurement model can monitor a power grid in real time. However, the method needs parameter oscillation, representing power imbalance in a power grid. This thesis proposes three measurement-based models to estimate inertia for systems under levels of photovoltaic systems: Symbolic Aggregate Approximation, Back Propagation Neural Network, and Minimum Volume Enclosing with a Gradient Descent Machine Model. The measurement-based inertia estimation models need large-scale system measurement data. PowerWorld Simulator has a function to analyze the transient stability, which is utilized in this thesis to generate simulated data for this. Reducing photovoltaic output power can mimic the impact of weather changes. Different types of photovoltaic controllers have various behavior. The Symbolic Aggregate Approximation transfers continuous data into discrete data. The advantage of this method over other techniques is its ability to compress large-scale data and the reduced data storage requirements. Hence, the model demonstrates the best performance for estimating the inertia. The Minimum Volume Enclosing Ellipsoid visualizes measurement data, including frequency, generator output power, and bus voltage, on a 3-dimensional space. The volume of the enclosed ellipsoid is the output that yields label inertia. During a fault in a power system, the volume of the ellipsoid increases. The Gradient Descent Model estimates an optimal regression curve to match volume with label inertia as the estimated inertia. The Back Propagation Neural Network is a nonlinear classification method. With multiple layers and neurons, this method can efficiently cluster complex input features, such as the frequency of all buses and generator output power. The error between the estimated inertia and the label inertia is used to modify the branches\u27 weight to reduce error. The disadvantage of the second and third models is that they do not have a better performance than the first one

    Control of Voltage-Source Converters Considering Virtual Inertia Dynamics

    Get PDF
    Controlling power-electronic converters in power systems has significantly gained more attention due to the rapid penetration of alternative energy sources. This growth in the depth of penetration also poses a threat to the frequency stability of modern power systems. Photovoltaic and wind power systems utilizing power-electronic converters without physical rotating masses, unlike traditional power generations, provide low inertia, resulting in frequency instability. Different research has developed the control aspects of power-electronic converters, offering many control strategies for different operation modes and enhancing the inertia of converter-based systems. The precise control algorithm that can improve the inertial response of converter-based systems in the power grid is called virtual inertia. This thesis employs a control methodology that mimics synchronous generators characteristics based on the swing equation of rotor dynamics to create virtual inertia. The models are also built under different cases, including grid-connected and islanded situations, using the swing equation with inner current and voltage outer loops. Analysis of the simulation results in MATLAB/Simulink demonstrates that active and reactive power are independently controlled under the grid-imposed mode, voltage and frequency are controlled under the islanded mode, and frequency stability of the system is enhanced by the virtual inertia emulation using swing equation. On this basis, it is recommended that the swing equation-based approach is incorporated with the current and voltage control loops to achieve better protection under over-current conditions. Further works are required to discover other factors that could improve the effectiveness of the models

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identiïŹ cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and ïŹ‚ exible, inverter-equipped testing microgrids. To this end, the combination of ïŹ‚ exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Virtual Inertia: Current Trends and Future Directions

    Get PDF
    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems
    • 

    corecore