2 research outputs found

    Motion Control on Bionic Eyes: A Comprehensive Review

    Full text link
    Biology can provide biomimetic components and new control principles for robotics. Developing a robot system equipped with bionic eyes is a difficult but exciting task. Researchers have been studying the control mechanisms of bionic eyes for many years and considerable models are available. In this paper, control model and its implementation on robots for bionic eyes are reviewed, which covers saccade, smooth pursuit, vergence, vestibule-ocular reflex (VOR), optokinetic reflex (OKR) and eye-head coordination. What is more, some problems and possible solutions in the field of bionic eyes are discussed and analyzed. This review paper can be used as a guide for researchers to identify potential research problems and solutions of the bionic eyes' motion control

    Human Following for Wheeled Robot with Monocular Pan-tilt Camera

    Full text link
    Human following on mobile robots has witnessed significant advances due to its potentials for real-world applications. Currently most human following systems are equipped with depth sensors to obtain distance information between human and robot, which suffer from the perception requirements and noises. In this paper, we design a wheeled mobile robot system with monocular pan-tilt camera to follow human, which can stay the target in the field of view and keep following simultaneously. The system consists of fast human detector, real-time and accurate visual tracker, and unified controller for mobile robot and pan-tilt camera. In visual tracking algorithm, both Siamese networks and optical flow information are exploited to locate and regress human simultaneously. In order in perform following with a monocular camera, the constraint of human height is introduced to design the controller. In experiments, human following are conducted and analysed in simulations and a real robot platform, which demonstrate the effectiveness and robustness of the overall system
    corecore