468 research outputs found

    Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    Get PDF
    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways of avoiding overlapping subsequences by combining two generators are proposed. Some fundamental philosophical problems in proving independence of random streams are discussed. Remedies for hitherto ignored quantization errors are offered. An open source C++ implementation is provided for a generator that meets these needs

    A Comparative Study of Some Pseudorandom Number Generators

    Full text link
    We present results of an extensive test program of a group of pseudorandom number generators which are commonly used in the applications of physics, in particular in Monte Carlo simulations. The generators include public domain programs, manufacturer installed routines and a random number sequence produced from physical noise. We start by traditional statistical tests, followed by detailed bit level and visual tests. The computational speed of various algorithms is also scrutinized. Our results allow direct comparisons between the properties of different generators, as well as an assessment of the efficiency of the various test methods. This information provides the best available criterion to choose the best possible generator for a given problem. However, in light of recent problems reported with some of these generators, we also discuss the importance of developing more refined physical tests to find possible correlations not revealed by the present test methods.Comment: University of Helsinki preprint HU-TFT-93-22 (minor changes in Tables 2 and 7, and in the text, correspondingly

    Vector processing-aware advanced clock-gating techniques for low-power fused multiply-add

    Get PDF
    The need for power efficiency is driving a rethink of design decisions in processor architectures. While vector processors succeeded in the high-performance market in the past, they need a retailoring for the mobile market that they are entering now. Floating-point (FP) fused multiply-add (FMA), being a functional unit with high power consumption, deserves special attention. Although clock gating is a well-known method to reduce switching power in synchronous designs, there are unexplored opportunities for its application to vector processors, especially when considering active operating mode. In this research, we comprehensively identify, propose, and evaluate the most suitable clock-gating techniques for vector FMA units (VFUs). These techniques ensure power savings without jeopardizing the timing. We evaluate the proposed techniques using both synthetic and “real-world” application-based benchmarking. Using vector masking and vector multilane-aware clock gating, we report power reductions of up to 52%, assuming active VFU operating at the peak performance. Among other findings, we observe that vector instruction-based clock-gating techniques achieve power savings for all vector FP instructions. Finally, when evaluating all techniques together, using “real-world” benchmarking, the power reductions are up to 80%. Additionally, in accordance with processor design trends, we perform this research in a fully parameterizable and automated fashion.The research leading to these results has received funding from the RoMoL ERC Advanced Grant GA 321253 and is supported in part by the European Union (FEDER funds) under contract TTIN2015-65316-P. The work of I. Ratkovic was supported by a FPU research grant from the Spanish MECD.Peer ReviewedPostprint (author's final draft

    Random number generation with multiple streams for sequential and parallel computing

    Get PDF
    International audienceWe provide a review of the state of the art on the design and implementation of random number generators (RNGs) for simulation, on both sequential and parallel computing environments. We focus on the need for multiple streams and substreams of random numbers, explain how they can be constructed and managed, review software libraries that offer them, and illustrate their usefulness via examples. We also review the basic quality criteria for good random number generators and their theoretical and empirical testing

    Analytical Query Processing Using Heterogeneous SIMD Instruction Sets

    Get PDF
    Numerous applications gather increasing amounts of data, which have to be managed and queried. Different hardware developments help to meet this challenge. The grow-ing capacity of main memory enables database systems to keep all their data in memory. Additionally, the hardware landscape is becoming more diverse. A plethora of homo-geneous and heterogeneous co-processors is available, where heterogeneity refers not only to a different computing power, but also to different instruction set architectures. For instance, modern Intel® CPUs offer different instruction sets supporting the Single Instruction Multiple Data (SIMD) paradigm, e.g. SSE, AVX, and AVX512. Database systems have started to exploit SIMD to increase performance. However, this is still a challenging task, because existing algorithms were mainly developed for scalar processing and because there is a huge variety of different instruction sets, which were never standardized and have no unified interface. This requires to completely rewrite the source code for porting a system to another hardware architecture, even if those archi-tectures are not fundamentally different and designed by the same company. Moreover, operations on large registers, which are the core principle of SIMD processing, behave counter-intuitively in several cases. This is especially true for analytical query process-ing, where different memory access patterns and data dependencies caused by the com-pression of data, challenge the limits of the SIMD principle. Finally, there are physical constraints to the use of such instructions affecting the CPU frequency scaling, which is further influenced by the use of multiple cores. This is because the supply power of a CPU is limited, such that not all transistors can be powered at the same time. Hence, there is a complex relationship between performance and power, and therefore also between performance and energy consumption. This thesis addresses the specific challenges, which are introduced by the application of SIMD in general, and the heterogeneity of SIMD ISAs in particular. Hence, the goal of this thesis is to exploit the potential of heterogeneous SIMD ISAs for increasing the performance as well as the energy-efficiency

    Random Number Generators for Parallel Computers

    Get PDF
    Random number generators are used in many applications, from slot machines to simulations of nuclear reactors. For many computational science applications, such as Monte Carlo simulation, it is crucial that the generators have good randomness properties. This is particularly true for large-scale simulations done on high-performance parallel computers. Good random number generators are hard to find, and many widely-used techniques have been shown to be inadequate. Finding high-quality, efficient algorithms for random number generation on parallel computers is even more difficult. Here we present a review of the most commonly-used random number generators for parallel computers, and evaluate each generator based on theoretical knowledge and empirical tests. In conclusion, we provide recommendations for using random number generators on parallel computers

    ARITHMETIC LOGIC UNIT ARCHITECTURES WITH DYNAMICALLY DEFINED PRECISION

    Get PDF
    Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that support statically defined precisions, often adhering to industry standards. Although CPU manufacturers highly optimize their ALUs, industry standard precisions embody accuracy and performance compromises for general purpose deployment. Hence, optimizing ALU precision holds great potential for improving speed and energy efficiency. Previous research on multiple precision ALUs focused on predefined, static precisions. Little previous work addressed ALU architectures with customized, dynamically defined precision. This dissertation presents approaches for developing dynamic precision ALU architectures for both fixed-point and floating-point to enable better performance, energy efficiency, and numeric accuracy. These new architectures enable dynamically defined precision, including support for vectorization. The new architectures also prevent performance and energy loss due to applying unnecessarily high precision on computations, which often happens with statically defined standard precisions. The new ALU architectures support different precisions through the use of configurable sub-blocks, with this dissertation including demonstration implementations for floating point adder, multiply, and fused multiply-add (FMA) circuits with 4-bit sub-blocks. For these circuits, the dynamic precision ALU speed is nearly the same as traditional ALU approaches, although the dynamic precision ALU is nearly twice as large
    • …
    corecore