394 research outputs found

    Practical Full Resolution Learned Lossless Image Compression

    Full text link
    We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.Comment: Updated preprocessing and Table 1, see A.1 in supplementary. Code and models: https://github.com/fab-jul/L3C-PyTorc

    A Universal Parallel Two-Pass MDL Context Tree Compression Algorithm

    Full text link
    Computing problems that handle large amounts of data necessitate the use of lossless data compression for efficient storage and transmission. We present a novel lossless universal data compression algorithm that uses parallel computational units to increase the throughput. The length-NN input sequence is partitioned into BB blocks. Processing each block independently of the other blocks can accelerate the computation by a factor of BB, but degrades the compression quality. Instead, our approach is to first estimate the minimum description length (MDL) context tree source underlying the entire input, and then encode each of the BB blocks in parallel based on the MDL source. With this two-pass approach, the compression loss incurred by using more parallel units is insignificant. Our algorithm is work-efficient, i.e., its computational complexity is O(N/B)O(N/B). Its redundancy is approximately Blog(N/B)B\log(N/B) bits above Rissanen's lower bound on universal compression performance, with respect to any context tree source whose maximal depth is at most log(N/B)\log(N/B). We improve the compression by using different quantizers for states of the context tree based on the number of symbols corresponding to those states. Numerical results from a prototype implementation suggest that our algorithm offers a better trade-off between compression and throughput than competing universal data compression algorithms.Comment: Accepted to Journal of Selected Topics in Signal Processing special issue on Signal Processing for Big Data (expected publication date June 2015). 10 pages double column, 6 figures, and 2 tables. arXiv admin note: substantial text overlap with arXiv:1405.6322. Version: Mar 2015: Corrected a typ

    A Codebook Generation Algorithm for Document Image Compression

    Full text link
    Pattern-matching-based document-compression systems (e.g. for faxing) rely on finding a small set of patterns that can be used to represent all of the ink in the document. Finding an optimal set of patterns is NP-hard; previous compression schemes have resorted to heuristics. This paper describes an extension of the cross-entropy approach, used previously for measuring pattern similarity, to this problem. This approach reduces the problem to a k-medians problem, for which the paper gives a new algorithm with a provably good performance guarantee. In comparison to previous heuristics (First Fit, with and without generalized Lloyd's/k-means postprocessing steps), the new algorithm generates a better codebook, resulting in an overall improvement in compression performance of almost 17%

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far
    corecore