14,167 research outputs found

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    A scenario approach for non-convex control design

    Full text link
    Randomized optimization is an established tool for control design with modulated robustness. While for uncertain convex programs there exist randomized approaches with efficient sampling, this is not the case for non-convex problems. Approaches based on statistical learning theory are applicable to non-convex problems, but they usually are conservative in terms of performance and require high sample complexity to achieve the desired probabilistic guarantees. In this paper, we derive a novel scenario approach for a wide class of random non-convex programs, with a sample complexity similar to that of uncertain convex programs and with probabilistic guarantees that hold not only for the optimal solution of the scenario program, but for all feasible solutions inside a set of a-priori chosen complexity. We also address measure-theoretic issues for uncertain convex and non-convex programs. Among the family of non-convex control- design problems that can be addressed via randomization, we apply our scenario approach to randomized Model Predictive Control for chance-constrained nonlinear control-affine systems.Comment: Submitted to IEEE Transactions on Automatic Contro

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio
    • …
    corecore