60,560 research outputs found

    Usability study of a wireless monitoring system among Alzheimer's Disease elderly population

    Get PDF
    Healthcare technologies are slowly entering into our daily lives, replacing old devices and techniques with newer intelligent ones. Although they are meant to help people, the reaction and willingness to use such new devices by the people can be unexpected, especially among the elderly. We conducted a usability study of a fall monitoring system in a long-term nursing home. The subjects were the elderly with advanced Alzheimer’s disease. The study presented here highlights some of the challenges faced in the use of wearable devices and the lessons learned. The results gave us useful insights, leading to ergonomics and aesthetics modifications to our wearable systems that significantly improved their usability and acceptance. New evaluating metrics were designed for the performance evaluation of usability and acceptability

    Usability Evaluation of a COPD Remote Monitoring Application

    Get PDF
    -Telemedicine applications have the potential to enhance patient’s safety at home by remote monitoring of chronic diseases. Telemedicine involves the interaction between multiple user groups through a system, making the usability aspect of such system crucial for the continuous, efficient and satisfactory use of the application. The main objective of this study was to carry out a usability evaluation in the field of a telemedicine application for remote monitoring of chronic obstructive pulmonary disease (COPD) patients to improve the application’s user interface before system deployment. A field trial was performed with six COPD patients at their homes, continuously using the system’s application on a tablet for seven days. The usability evaluation identified 23 usability problems related to users’ interactions and system’s functionality. These problems were solved with the refinement of the system through an iterative application development process. The outcome of the study was the improved telemedicine application that was adopted by the partners of the FP7 EU project United4Health

    RaspiMonitor: a Raspberry Pi based smart home monitoring system

    Get PDF
    Novel technological infrastructure such as smart homes have undergone major developments during recent years. Owing to the numerous benefits brought about by smart homes, research on the topic has been increasing at an exponential rate, bringing quality properties such as security, usability, reliability, and others. Despite their various advantages, smart homes have not been in a positive spotlight regarding security and reliability. The main reason that people are hesitant towards adopting an implemented intelligent system at their domicile is due to the lack of trust they allocate to the electronics. As such, this paper provides insights on an innovative and low-cost smart home monitoring system named RaspiMonitor. While the central aim of the system is to offer a robust smart home architecture which discreetly caters for the safety and security of its environment, it also helps in reducing energy wastage. The RaspiMonitor was carefully designed using dynamic web-based services in addition to an evaluation which quantified its usability and acceptance through the Technology Acceptance Model (TAM) with 6 constructs. Results in principle portray acceptance of the system with a mean score of 4.47. This indicates that a robust hardware and software architecture such as the RaspiMonitor is useful, convenient, and easy to use

    A generic user interface for energy management in smart homes

    Get PDF
    Abstract Building operating systems play an important role in monitoring energy consumption of devices and improving energy efficiency in household buildings. From this arises a need for a preferably flexible and full-featured user interface to visualize the energy data in the building and allow residents to collect and realize various needs and preferences to the system. This article introduces a generic user interface for building operating systems which is presented from aspects of design, implementation and evaluation. To ensure the user interface can be flexibly adapted to various types of buildings, we design a series of generic data models which are independent of any building operating system. Besides, three roles with different permissions and a number of functional components of the user interface are also introduced in the article. Based on the design, a prototype of such a generic user interface named Building Operating System User Interface (BOS UI) has been implemented to operate the Energy Smart Home Lab (ESHL) at the Karlsruhe Institute of Technology (KIT). We evaluate the design, functionality and usability of the BOS UI qualitatively and quantitatively. The evaluation results show that the BOS UI meets a set of desired requirements (except for system configuration) for a generic user interface of building operating systems. Besides this, the evaluation experiments yielded very positive feedback in many aspects including improvement of energy efficiency and user experience. More than 90% of the test users agreed that the BOS UI provided them with enough information and functionalities that they would need in their daily lives and it can help them to save money. Furthermore, the mean score of the System Usability Scale (SUS) is 79.0, which indicates a good usability. The experiments prove that the user interface is still easy to use, despite abundant features are integrated into the system

    On the use of natural user interfaces in physical rehabilitation: a web-based application for patients with hip prosthesis

    Get PDF
    This study aims to develop a telemedicine platform for self-motor rehabilitation and remote monitoring by health professionals, in order to enhance recovery in patients after hip replacement. The implementation of such a technology is justified by medical (improvement of the recovery process by the possibility to perform rehabilitation exercises more frequently), economic (reduction of the number of medical appointments and the time patients spend at the hospital), mobility (diminution of the transportation to and from the hospital) and ethics (healthcare democratization and increased empowerment of the patient) purposes. The Kinect camera is used as a Natural User Interface to capture the physical exercises performed at home by the patients. The quality of the movement is evaluated in real-time by an assessment module implemented according to a Hidden-Markov Model approach. The results show a high accuracy in the evaluation of the movements (92% of correct classification). Finally, the usability of the platform is tested through the System Usability Scale (SUS). The overall SUS score is 81 out of 100, which suggests a good usability of the Web application. Further work will focus on the development of additional functionalities and an evaluation of the impact of the platform on the recovery process

    In Pursuit of an Easy to Use Brain Computer Interface for Domestic Use in a Population with Brain Injury

    Get PDF
    This paper presents original research investigating a sensor based, ambient assisted smart home platform, within the framework of a brain computer interface (BackHome). This multimodal system integrates home-based sensors, mobile monitoring, with communication tools, web browsing, smart home control and cognitive rehabilitation. The target population are people living at home with acquired brain injury. This research engaged with the target population and those without brain injury, who provided a control for system testing. Aligned with our ethical governance a strong user centric ethos was foundational to participant engagement. Participant experience included three individual sessions to complete a pre-set protocol with supervision. Evaluation methodology included observations, time logging, completion of protocol and usability questionnaires. Results confirmed the average accuracy score for the people without brain injury was 82.6% (±4.7), performing best with the cognitive rehabilitation. Target end users recorded an average accuracy score of 76% (±11.5) with the speller logging the highest accuracy score. Additional outcomes included the need to refine the aesthetic appearance, as well as improving the reliability and responsiveness of the BCI. The findings outline the importance of engaging with end users to design and develop marketable BCI products for use in a domestic environment. DOI: 10.17762/ijritcc2321-8169.150610

    Experiences of in-home evaluation of independent living technologies for older adults

    Get PDF
    Evaluating home-based independent living technologies for older adults is essential. Whilst older adults are a diverse group with a range of computing experiences, it is likely that many of this user group may have little experience with technology and may be challenged with age-related impairments that can further impact upon their interaction with technology. However, the evaluation life cycle of independent living technologies does not only involve usability testing of such technologies in the home. It must also consider the evaluation of the older adult’s living space to ensure technologies can be easily integrated into their homes and daily routines. Assessing the impact of these technologies on older adults is equally critical as they can only be successful if older adults are willing to accept and adopt them. In this paper we present three case studies that illustrate the evaluation life cycle of independent living technologies within TRIL, which include ethnographic assessment of participant attitudes and expectations, evaluation of the living space prior to the deployment of any technology, to the final evaluation of usability and participant perspectives

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    Strategies to design for dynamic usability

    Get PDF
    Since usability is a property of the interaction between a product, a user and the task that he or she is trying to complete [6], a product’s usability can vary when it is used in varying use situations. We define this as dynamic usability. This study is aimed at exploring how practitioners currently deal with dynamic usability. From a retrospective case study research of three design projects different principles and strategies were formulated for dealing with dynamic use situations. In this paper we present solution principles that are applied to accommodate products to dynamic use situations and we discuss two design process issues with regard to dynamic usability, namely the information sources that are used to get insight in the use situations and the means by which designers try to get insight in the consequence of their design decisions with regard to future use situation
    • …
    corecore