12,214 research outputs found

    Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes

    Full text link
    Fast pricing of American-style options has been a difficult problem since it was first introduced to financial markets in 1970s, especially when the underlying stocks' prices follow some jump-diffusion processes. In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation theorem for jump processes on the dual martingale, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our proposed algorithm

    Optimal dual martingales, their analysis and application to new algorithms for Bermudan products

    Full text link
    In this paper we introduce and study the concept of optimal and surely optimal dual martingales in the context of dual valuation of Bermudan options, and outline the development of new algorithms in this context. We provide a characterization theorem, a theorem which gives conditions for a martingale to be surely optimal, and a stability theorem concerning martingales which are near to be surely optimal in a sense. Guided by these results we develop a framework of backward algorithms for constructing such a martingale. In turn this martingale may then be utilized for computing an upper bound of the Bermudan product. The methodology is pure dual in the sense that it doesn't require certain input approximations to the Snell envelope. In an It\^o-L\'evy environment we outline a particular regression based backward algorithm which allows for computing dual upper bounds without nested Monte Carlo simulation. Moreover, as a by-product this algorithm also provides approximations to the continuation values of the product, which in turn determine a stopping policy. Hence, we may obtain lower bounds at the same time. In a first numerical study we demonstrate the backward dual regression algorithm in a Wiener environment at well known benchmark examples. It turns out that the method is at least comparable to the one in Belomestny et. al. (2009) regarding accuracy, but regarding computational robustness there are even several advantages.Comment: This paper is an extended version of Schoenmakers and Huang, "Optimal dual martingales and their stability; fast evaluation of Bermudan products via dual backward regression", WIAS Preprint 157

    Optimal Transport and Skorokhod Embedding

    Full text link
    The Skorokhod embedding problem is to represent a given probability as the distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has become one of the important classical problems in probability theory and a number of authors have constructed solutions with particular optimality properties. These constructions employ a variety of techniques ranging from excursion theory to potential and PDE theory and have been used in many different branches of pure and applied probability. We develop a new approach to Skorokhod embedding based on ideas and concepts from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann on the geometry of optimal transport, we establish a geometric characterization of Skorokhod embeddings with desired optimality properties. This leads to a systematic method to construct optimal embeddings. It allows us, for the first time, to derive all known optimal Skorokhod embeddings as special cases of one unified construction and leads to a variety of new embeddings. While previous constructions typically used particular properties of Brownian motion, our approach applies to all sufficiently regular Markov processes.Comment: Substantial revision to improve the readability of the pape
    • …
    corecore